
Lecture 22: More obfuscation, exotic encryptions.

Boaz Barak

Fully homomorphic encryption is an extremely powerful notion, but it does not
allow us to obtain fine control over the access to information. With the public
key you can do all sorts of computation on the encrypted data, but you still
do not learn it, while with the private key you learn everything. But in many
situations we want fine grained access control: some people should get access to
some of the information for some of the time. This makes the “all or nothing”
nature of traditional encryptions problematic. While one could still implement
such access control by interacting with the holder(s) of the secret key, this is not
always possible.

The most general notion of an encryption scheme allowing fine control is known
as functional encryption, as was described in the previous lecture. This can be
viewed as an object dual to Fully Homomorphic Encryption, and incomparable
to it. For every function f , we can construct an f-restricted decryption key df

that allows recovery of f(m) from an encryption of m but not anything else.

In this lecture we will focus on a weaker notion known as identity based encryption
(IBE). Unlike the case of full fledged functional encryption, there are fairly
efficient constructions known for IBE.

Slower, weaker, less securer

In a sense, functional encryption or IBE is all about selective leaking of infor-
mation. That is, in some sense we want to modify an encryption scheme so
that it actually is “less secure” in some very precise sense, so that it would be
possible to learn something about the plaintext even without knowing the (full)
decryption key.

There is actually a history of cryptographic technique meant to support such
operations. Perhaps the “mother” of all such “quasi encryption” schemes is the
modular exponentiation operation x 7→ gx for some discrete group Gp. The map
x 7→ gx is not exactly an encryption of x- for one thing, we don’t know how
to decrypt it. Also, as a deterministic map, it cannot be semantically secure.
Nevertheless, if x is random, or even high entropy, in groups such as cyclic
subgroup of a multiplicative group modulo some prime, we don’t know how to
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recover x from gx. However, given gx1 , . . . , gxk and a1, . . . , ak we can find out if∑
aixi = 0, and this can be quite useful in many applications.

More generally, even in the private key setting, people have studied encryption
schemes such as

• Deterministic encryption : an encryption scheme that maps x to E(x)
in a deterministic way. This cannot be semantically secure in general but
can be good enough if the message x has high enough entropy or doesn’t
repeat and allows to check if two encryptions encrypt the same object.
(We can also do this by publishing a hash of x under some secret salt.)

• Order preserving encryption: is an encryption scheme mapping num-
bers in some range {1, . . . , N} to ciphertexts so that given E(x) and E(y)
one can efficiently compare whether x < y. This is quite problematic for
security. For example, given poly(t) random such encryptions you can more
or less know where they lie in the interval up to (1± 1/t) multiplicative
factor..

• Searchable encryption: is a generalization of deterministic encryption
that allows some more sophisticated searchers (such as not only exact
match).

Some of these constructions can be quite efficient. In particular the system
CryptDB developed by Popa et al uses these kinds of encryptions to automatically
turn a SQL database into one that works on encrypted data and still supports
the required queries. However, the issue of how dangerous the “leakage” can be is
somewhat subtle. See this paper and blog post claiming weaknesses in practical
use cases for CryptDB, as well as this response by the CryptDB authors.

While the constructions of IBE and functional encryption often use maps such
as x 7→ gx as subroutines, they offer a stronger control over the leakage in the
sense that, in the absence of publishing a (restricted) decryption key, we always
get at least CPA security.

How to get IBE from pairing based assumptions.

The standard exponentiation mapping x 7→ gx allows us to compute linear func-
tions in the exponent. That is, given any linear map L of the form L(x1, . . . , xk) =∑
aixi, we can efficiently compute the map gx1 , . . . , gxk 7→ gL(x1,...,xk). But can

we do more? In particular, can we compute quadratic functions? This is an issue,
as even computing the map gx, gy 7→ gxy is exactly the Diffie Hellman problem
that is considered hard in many of the groups we are interested in.

Pairing based cryptography begins with the observation that in some elliptic
curve groups we can use a map based on the so called Weil or Tate pairings.
The idea is that we have an efficiently computable isomorphism from a group
Gp1 to a group Gp2 mapping g to ĝ such that we can efficiently map the elements
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gx and gy to the element ϕ(gx, gy) = ĝxy. This in particular means that given
gx1 , . . . , gxk we can compute ĝQ(x1,...,xk) for every quadratic Q. Note that we
cannot repeat this to compute, say, degree 4 functions in the exponent, since we
don’t know how to invert the map ϕ.

The Pairing Diffie Hellman Assumption is that we can find two such groups
Gp1,Gp2 and generator g for Gp such that there is no efficient algorithm A that
on input ga, gb, gc (for random a, b, c ∈ {0, . . . , |Gp| − 1}) computes ĝabc. That is,
while we can compute a quadratic in the exponent, we can’t compute a cubic.

We now show an IBE construction due to Boneh and Franklin1 how we can
obtain from the pairing diffie hellman assumption an identity based encryption:

• Master key generation: We generate Gp1,Gp2, g as above, choose a
at random in {0, . . . , |Gp| − 1}. The master private key is a and the
master public key is Gp1,Gp2, g, h = ga. We let H : {0, 1}∗ → Gp1 and
H ′ : Gp2 7→ {0, 1}` be two hash functions modeled as random oracles.

• Key distribution: Given an arbitrary string id ∈ {0, 1}∗, we generate
the decryption key corresponding to id, as did = H(id)a.

• Encryption: To encrypt a message m ∈ {0, 1}` given the public
paramters and some id id, we choose c ∈ {0, . . . , |Gp| − 1}, and output
gc, H ′(id‖ϕ(h,H(id))c)⊕m

• Decryption: Given the secret key did and a ciphertext h′, y, we output
H ′(id‖ϕ(did, h

′))⊕ x

Correctness: We claim that Ddid
(Eid(m)) = m. Indeed, write

hid = H(id) and let b = logg hid. Then an encryption of m has the
form h′ = gc, H ′(id‖ϕ(ga, hid)c) ⊕ m, and so the second term is equal to
H ′(id‖ĝabc)⊕m. However, since did = ha

id = gab, we get that ϕ(h′, did) = ĝabc

and hence decryption will recover the message. QED

Security: To prove security we need to first present a definition of IBE security.
The definition allows the adversary to request keys corresponding to arbitrary
identities, as long as it does not ask for keys corresponding to the target identity
it wants to attack. There are several variants, including CCA type of security
definitions, but we stick to a simple one here:

1The construction we show was first published in the CRYPTO 2001 conference. The Weil
and Tate pairings were used before for cryptographic attacks, but were used for a positive
cryptographic result by Antoine Joux in his 2000 paper getting a three-party Diffie Hellman
protocol and then Boneh and Franklin used this to obtain an identity based encryption scheme,
answering an open question of Shamir. At approximately the same time as these papers, Sakai,
Ohgishi and Kasahara presented a paper in the SCIS 2000 conference in Japan showing an
identity-based key exchange protocol from pairing. Also Clifford Cocks (who as we mentioned
above in the 1970’s invented the RSA scheme at GCHQ before R,S, and A did), also came
up in 2001 with a different identity-based encryption scheme using the quadratic residuosity
assumption.
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Definition: An IBE scheme is said to be CPA secure if every efficient adversary
Eve wins the following game with probability at most 1/2 + negl(n):

• The keys are generated and Eve gets the master public key.
• For i = 1, . . . , T = poly(n), Eve chooses an identity idi ∈ {0, 1}∗ and gets

the key did.
• Eve chooses an identity id∗ 6∈ {id1, . . . , idT } and two messages m0,m1.
• We choose b←R {0, 1} and Eve gets the encryption of mb with respect to

the identity id∗.
• Eve outputs b′ and wins if b′ = b.

Theorem: If the pairing Diffie Hellman assumption holds and H,H ′ are random
oracles, then the scheme above is CPA secure.

Proof: Suppose for the sake of contradiction that there exists some time
T = poly(n) adversary A that succeeds in the IBE-CPA with probability at least
1/2 + ε for some non-negligible ε. We assume without loss of generality that
whenever A makes a query to the key distribution function with id id or a query
to H ′ with prefix id, it had already previously made the query id to H. (A can
be easily modified to have this behavior)

We will build an algorithm B that on input Gp1,Gp2, g, ga, gb, gc will output ĝabc

with probability poly(ε, 1/T ).

The algorithm B will guess i0, j0 ←R {1, . . . , T} and simulate A “in its belly”
giving it the public key ga, and act as follows:

• When A makes a query to H with id, then for all but the ith
0 queries, B

will chooose a random bid ∈ {0, . . . , |Gp|} (as usual we’ll assume |Gp| is
prime), choose eid = gbid and define H(id) = eid. Let id0 be the ith

0 query
A made to the oracle. We define H(i0) = gb (where gb is the input to B-
recall that B does not know b.)

• When A makes a query to the key distribution oracle with id then if
id 6= id0 then B will then respond with did = (ga)bid . If id = id0 then B
aborts and fails.

• When A makes a query to the H ′ oracle with input id′‖ĥ then for all but
the jth

0 query B answers with a random string in {0, 1}`. In the jth
0 query,

if id′ 6= id0 then B stops and fails. Otherwise, it outputs ĥ.

• B does stops the simulation and fails if we get to the challenge part.

It might seem weird that we stop the simulation before we reach the challenge
part, but the correctness of this reduction follows from the following claim:

Claim: In the actual attack game, with probability at least ε/10 A will make
the query id∗‖ĝabc to the H ′ oracle, where H(id∗) = gb and the public key is ga.

Proof: If A does not make this query then the message in the challenge is
XOR’ed by a completely random string and A cannot distinguish between m0
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and m1 in this case with probability better than 1/2. QED

Given this claim, to prove the theorem we just need to observe that, assuming
it does not fail, B provides answers to A that are identically distributed to the
answers A receives in an actual execution of the CPA game, and hence with
probability at least ε/(10T 2), B will guess the query i0 when A queries H(id∗)
and set the answer to be gb, and then guess the query j0 when A queries id∗‖ĝabc

in which case B’s output will be correct. QED

Beyond pairing based cryptography

Boneh and Silverberg asked the question of whether we could go beyond quadratic
polynomials and get schemes that allow us to compute higher degree. The idea is
to get a multilinear map which would be a set of isomorphic groups Gp1, . . . ,Gpd
with generators g1, . . . , gd such that we can map ga

i and gb
j to gab

i+j .
This way we would be able to compute any degree d polynomial in the exponent
given gx1

1 , . . . , gxk
1 .

We will now show how using such a multilinear map we can get a construction
for a witness encryption scheme. We will only show the construction, without
talking about the security definition, the assumption, or security reductions.

Given some circuit C : {0, 1}n → {0, 1} and some message x we want to
“encrypt” x in a way that given w such that C(w) = 1 it would be possible
to decrypt x, and otherwise it should be hard. It should be noted that the
encrypting party itself does not know any such w and indeed (as in the case
of the proof of Reimann hypothesis) might not even know if such a w exists.
The idea is the following. We use the fact that the Exact Cover problem is
NP complete to map C into collection of subsets S1, . . . , Sm of the universe U
(where m, |U | = poly(|C|, n)) such that there exists w with C(w) = 1 if and only
if there exists d sets Si1 , . . . , Sid

that are a partition of U (i.e., every element in
U is covered by exactly one of these sets), and moreover there is an efficient way
to map w to such a partition and vice versa. Now, to encrypt the message x we
take a degree d instance of multilinear maps (Gp1, . . . ,Gpd, g1, . . . , gd) (with all
groups of size p) and choose random a1, . . . , a|U | ←R {0, . . . , p− 1}. We then

output the ciphertext g
∏

j∈S1
aj

1 , . . . , g

∏
j∈Sm

aj

1 , H(g
∏m

j∈U
aj

d )⊕ x. Now, given a
partition Si1 , . . . , Sid

of the universe d, we can use the multilinear operations to

compute g
∏

j∈U
aj

d and recover the message. Intuitively, since the numbers are
random, that would be the only way to come up with computing this value, but
showing that requires formulating precise security definitions for both multilinear
maps and witness encryption and of course a proof.

The first candidate construction for a multilinear map was given by Garg, Gentry
and Halevi. It is based on computational questions on lattices and so (perhaps
not surprisingly) it involves significant complications due to noise. At a very
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high level, the idea is to use a fully homomorphic encryption scheme that can
evaluate polynomials up to some degree d, but release a “hobbled decryption
key” that contains just enough information to provide what’s known as a zero
test: check if an encryption is equal to zero. Because of the homomorphic
properties, that means that we can check given encryptions of x1, . . . , xn and
some degree d polynomial P , whether P (x1, . . . , xd) = 0. Moreover, the notion
of security this and similar construction satisfy is rather subtle and indeed not
fully understood. Constructions of indistinguishability obfuscators are built
based on this idea, but are significantly more involved than the construction of
a witness encryption. One central tool they use is the observation that FHE
reduces the task of obfuscation to essentially obfuscating a decryption circuit,
which can often be rather shallow. But beyond that there is significant work to
be done to actually carry out the obfuscation.

At the time of this writing, Appendix A of this paper is a good source for the
lastest constructions and attacks.
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