
Lecture 20: Quantum computing and
cryptography II

Boaz Barak

Shor’s Algorithm

Bell’s Inequality is powerful demonstration that there is something very strange
going on with quantum mechanics. But could this “strangeness” be of any use
to solve computational problems not directly related to quantum systems? A
priori, one could guess the answer is no. In 1994 Peter Shor showed that one
would be wrong:

Theorem (Shor’s Theorem): The map that takes an integer m into its
prime factorization is efficiently quantumly computable. Specifically, it can be
computed using O(log3 m) quantum gates.

This is an exponential improvement over the best known classical algorithms,
which as we mentioned before, take roughly 2 ˜O(log1/3 m) time.

We will now sketch the ideas behind Shor’s algorithm. In fact, Shor proved the
following more general theorem:

Theorem: There is a quantum polynomial time algorithm that given a multi-
plicative Abelian group G and element g ∈ G computes the order of g in the
group.

Recall that the order of g in G is the smallest positive integer a such that ga = 1.
By “given a group” we mean that we can represent the elements of the group
as strings of length O(log |G|) and there is a poly(log |G|) algorithm to perform
multiplication in the group.

From order finding to factoring and discrete log

The order finding problem allows not just to factor integers in polynomial
time, but also solve the discrete logarithm over arbitrary Abelian groups, hereby
showing that quantum computers will break not just RSA but also Diffie Hellman
and Elliptic Curve Cryptography. We merely sketch how one reduces the factoring

1

and discrete logarithm problems to order finding: (see some of the sources above
for the full details)

• For factoring, let us restrict to the case m = pq for distinct p, q. Recall
that we showed that finding the size (p − 1)(q − 1) = m − p − q − 1 of
the group Z∗m is sufficient to recover p and q. One can show that if we
pick a few random x’s in Z∗m and compute their order, the least common
multiplier of these orders is likely to be the group size.

• For discrete log in a group G, if we get X = gx and need to recover x, we
can compute the order of various elements of the form Xagb. The order of
such an element is a number c satisfying c(xa+ b) = 0 (mod |G|). Again,
with a few random examples we will get a non trivial example (where c 6= 0
(mod |G|)) and be able to recover the unknown x.

Finding periods of a function: Simon’s Algorithm

Let H be some Abelian group with a group operation that we’ll denote by ⊕,
and f be some function mapping H to an arbitrary set (which we can encode
as {0, 1}∗). We say that f has period h∗ for some h∗ ∈ H if for every x, y ∈ H,
f(x) = f(y) if and only if y = x ⊕ kh∗ for some integer k. Note that if G is
some Abelian group, then if we define H = Z|G|, for every element g ∈ G, the
map f(a) = ga is a periodic map over H with period the order of g. So, finding
the order of an item reduces to the question of finding the period of a function.

How do we generally find the period of a function? Let us consider the simplest
case, where f is a function from R to R that is h∗ periodic for some number
h∗, in the sense that f repeats itself on the intervals [0, h∗], [h∗, 2h∗], [2h∗, 3h∗],
etc.. How do we find this number h∗? The key idea would be to transform f
from the time to the frequency domain. That is, we use the Fourier transform to
represent f as a sum of wave functions. In this representation wavelengths that
divide the period h∗ would get significant mass, while wavelengths that don’t
would likely “cancel out”.

Similarly, the main idea behind Shor’s algorithm is to use a tool known as the
quantum fourier transform that given a circuit computing the function f : H→ R,
creates a quantum state over roughly log |H| qubits (and hence dimension |H|)
that corresponds to the Fourier transform of f . Hence when we measure this
state, we get a group element h with probability proportional to the square of
the corresponding Fourier coefficient. One can show that if f is h∗-periodic then
we can recover h∗ from this distribution.

Shor carried out this approach for the group H = Z∗q for some q, but we will
start be seeing this for the group H = {0, 1}n with the XOR operation. This
case is known as Simon’s algorithm (given by Dan Simon in 1994) and actually
preceded (and inspired) Shor’s algorithm:

2

Figure 1: If f is a periodic function then when we represent it in the Fourier
transform, we expect the coefficients corresponding to wavelengths that do not
evenly divide the period to be very small, as they would tend to “cancel out”.

Theorem (Simon’s Algorithm): If f : {0, 1}n → {0, 1}∗ is polynomial time
computable and satisfies the property that f(x) = f(y) iff x⊕ y = h∗ then there
exists a quantum polynomial-time algorithm that outputs a random h ∈ {0, 1}n
such that 〈h, h∗〉 = 0 (mod 2).

Note that given O(n) such samples, we can recover h∗ with high probability by
solving the corresponding linear equations.

Proof: Let HAD be the 2× 2 unitary matrix corresponding to the one qubit
operation |0〉 7→ 1√

2 (|0〉 + |1〉) and |1〉 7→ 1√
2 (|0〉 − |1〉) or |a〉 7→ 1√

2 (|0〉 +
(−1)a|1〉). Given the state |0n+m〉 we can apply this map to each one of the
first n qubits to get the state 2−n/2∑

x∈{0,1}n |x〉|0m〉 and then we can apply
the gates of f to map this to the state 2−n/2∑

x∈{0,1}n |x〉|f(x)〉 now suppose
that we apply this operation again to the first n qubits then we get the state
2−n

∑
x∈{0,1}n

∏n
i=1(|0〉+ (−1)xi |1〉)|f(x)〉 which if we open up each one of these

product and look at all 2n choices y ∈ {0, 1}n (with yi = 0 corresponding
to picking |0〉 and yi = 1 corresponding to picking |1〉 in the ith product) we
get 2−n

∑
x∈{0,1}n

∑
y∈{0,1}n(−1)〈x,y〉|y〉|f(x)〉. Now under our assumptions for

every particular z in the image of f , there exist exactly two preimages x and
x⊕ h∗ such that f(x) = f(x+ h∗) = z. So, if 〈y, h∗〉 = 0 (mod 2), we get that
(−1)〈x,y〉 + (−1)〈x,y+h∗〉 = 2 and otherwise we get (−1)〈x,y〉 + (−1)〈x,y+h∗〉 = 0.
Therefore, if measure the state we will get a pair (y, z) such that 〈y, h∗〉 = 0
(mod 2). QED

Simon’s algorithm seems to really use the special bit-wise structure of the group

3

{0, 1}n, so one could wonder if it has any relevance for the group Z∗m for some
exponentially large m. It turns out that the same insights that underlie the well
known Fast Fourier Transform (FFT) algorithm can be used to essentially follow
the same strategy for this group as well.

From Simon to Shor1

We now describe how to achieve Shor’s algorithm for order finding. We will not
do this for a general group but rather focus our attention on the group Z∗` for
some number ` which is the case of interest for integer factoring and the discrete
logarithm modulo primes problems.

That is, we prove the following theorem:

Theorem (Shor’s Algorithm): For every ` and a ∈ Z∗` , there is a quantum
poly(log`) algorithm to find the order of a in Z∗` .

The idea is similar to Simon’s algorithm. We consider the map x 7→ ax(mod `)
which is a periodic map over Zm where m = |Z∗` | with period being the order of
a.
To find the period of this map we will now need to perform a Quantum Fourier
Transform (QFT) over the group Zm instead of {0, 1}n. This is a quantum
algorithm that takes a register from some arbitrary state f ∈ Cm into a state
whose vector is the Fourier transform f̂ of f . The QFT takes only O(log2 m)
elementary steps and is thus very efficient. Note that we cannot say that this
algorithm “computes” the Fourier transform, since the transform is stored in
the amplitudes of the state, and as mentioned earlier, quantum mechanics give
no way to “read out” the amplitudes per se. The only way to get information
from a quantum state is by measuring it, which yields a single basis state with
probability that is related to its amplitude. This is hardly representative of
the entire Fourier transform vector, but sometimes (as is the case in Shor’s
algorithm) this is enough to get highly non-trivial information, which we do not
know how to obtain using classical (non-quantum) computers.

The Fourier transform over Zm

We now define the Fourier transform over Zm (the group of integers in {0, . . . ,m−
1} with addition modulo m). We give a definition that is specialized to the
current context. For every vector f ∈ Cm, the Fourier transform of f is the
vector f̂ where the xth coordinate of f̂ is defined as2

f̂(x) = 1√
m

∑
y∈Zm

f(x)ωxy

1The presentation here is adapted from the quantum computing chapter in my textbook
with Arora.

2In the context of Fourier transform it is customary and convenient to denote the xth

coordinate of a vector f by f(x) rather than fx.

4

where ω = e2πi/m.

The Fourier transform is simply a representation of f in the Fourier basis
{χx}x∈Zm , where χx is the vector/function whose yth coordinate is 1√

mωxy . Now
the inner product of any two vectors χx, χz in this basis is equal to

〈χx, χz〉 = 1
m

∑
y∈Zm

ωxyωzy = 1
m

∑
y∈Zm

ω(x−z)y .

But if x = z then ω(x−z) = 1 and hence this sum is equal to 1. On the other
hand, if x 6= z, then this sum is equal to 1

m
1−ω(x−y)m

1−ωx−y = 1
m

1−1
1−ωx−y = 0 using the

formula for the sum of a geometric series. In other words, this is an orthonormal
basis which means that the Fourier transform map f 7→ f̂ is a unitary operation.

What is so special about the Fourier basis? For one thing, if we identify vectors
in Cm with functions mapping Zm to C, then it’s easy to see that every function
χ in the Fourier basis is a homomorphism from Zm to C in the sense that
χ(y + z) = χ(y)χ(z) for every y, z ∈ Zm. Also, every function χ is periodic in
the sense that there exists r ∈ Zm such that χ(y + r) = χ(z) for every y ∈ Zm
(indeed if χ(y) = ωxy then we can take r to be `/x where ` is the least common
multiple of x and m). Thus, intuitively, if a function f : Zm → C is itself
periodic (or roughly periodic) then when representing f in the Fourier basis, the
coefficients of basis vectors with periods agreeing with the period of f should be
large, and so we might be able to discover f ’s period from this representation.
This does turn out to be the case, and is a crucial point in Shor’s algorithm.

Fast Fourier Transform.

Denote by FTm the operation that maps every vector f ∈ Cm to its Fourier
transform f̂ . The operation FTm is represented by an m ×m matrix whose
(x, y)th entry is ωxy. The trivial algorithm to compute it takes m2 operations.
The famous Fast Fourier Transform (FFT) algorithm computes the Fourier
transform in O(m logm) operations. We now sketch the idea behind the FFT
algorithm as the same idea is used in the quantum Fourier transform algorithm.

Note that

f̂(x) = 1√
m

∑
y∈Zm

f(y)ωxy =
1√
m

∑
y∈Zm,y even

f(y)ω−2x(y/2) + ωx 1√
m

∑
y∈Zm,y odd

f(y)ω2x(y−1)/2 .

Now since ω2 is an m/2th root of unity and ωm/2 = −1, letting W be the
m/2×m/2 diagonal matrix with diagonal entries ω0, . . . , ωm/2−1, we get that

FTm(f)low = FTm/2(feven) +WFTm/2(fodd)

FTm(f)high = FTm/2(feven)−WFTm/2(fodd)

where for an m-dimensional vector ~v, we denote by ~veven (resp. ~vodd) the m/2-
dimensional vector obtained by restricting ~v to the coordinates whose indices

5

have least significant bit equal to 0 (resp. 1) and by ~vlow (resp. ~vhigh) the
restriction of ~v to coordinates with most significant bit 0 (resp. 1).

The equations above are the crux of the divide-and-conquer idea of the FFT
algorithm, since they allow to replace a size-m problem with two size-m/2
subproblems, leading to a recursive time bound of the form T (m) = 2T (m/2) +
O(m) which solves to T (m) = O(m logm).

Quantum Fourier Transform over Zm

The quantum Fourier transform is an algorithm to change the state of a quantum
register from f ∈ Cm to its Fourier transform f̂ .

Theorem (Quantum Fourier Transform, Bernstein Vazirani):_ For every m
and m = 2m there is a quantum algorithm that uses O(m2) elementary quantum
operations and transforms a quantum register in state f =

∑
x∈Zm

f(x)|x〉 into
the state f̂ =

∑
x∈Zm

f̂(x)|x〉, where f̂(x) = 1√
m

∑
y∈Zm

ωxyf(x).

The crux of the algorithm is the FFT equations, which allow the problem of
computing FTm, the problem of sizem, to be split into two identical subproblems
of size m/2 involving computation of FTm/2, which can be carried out recursively
using the same elementary operations. (Aside: Not every divide-and-conquer
classical algorithm can be implemented as a fast quantum algorithm; we are
really using the structure of the problem here.)

Operation State (neglecting normalizing factors)
intial state: f =

∑
x∈Zm

f(x)|x〉
Recursively run
FTm/2 on m− 1
most significant
qubits

(FTm/2feven)|0〉+ (FTm/2fodd)|1〉

If LSB is 1 then
compute W on
m− 1 most
significant
qubits (see
below).

(FTm/2feven)|0〉+ (WFTm/2fodd)|1〉

Apply Hadmard
gate H to least
significant qubit.

(FTm/2feven)(|0〉+ |1〉) +
(WFTm/2fodd)(|0〉 − |1〉) =

- (FTm/2feven +WFTm/2fodd)|0〉+ (FTm/2feven −
WFTm/2fodd)|1〉

6

Operation State (neglecting normalizing factors)
Move LSB to
the most
significant
position

|0〉(FTm/2feven +WFTm/2fodd) +
|1〉(FTm/2feven −WFTm/2fodd) = f̂

The transformationW on m−1 qubits can be defined by |x〉 7→ ωx = ω
∑m−2

i=0
2ixi

(where xi is the ith qubit of x). It can be easily seen to be the result of applying
for every i ∈ {0, . . . ,m− 2} the following elementary operation on the ith qubit
of the register:

|0〉 7→ |0〉 and |1〉 7→ ω2i |1〉.

The final state is equal to f̂ by the FFT equations (we leave this as an exercise)

Shor’s Order-Finding Algorithm.

We now present the central step in Shor’s factoring algorithm: a quantum
polynomial-time algorithm to find the order of an integer a modulo an integer `.

Theorem (order finding algorithm, restated): There is a polynomial-time
quantum algorithm that on input A,N (represented in binary) finds the smallest
r such that Ar = 1 (mod N).

Let m = d5 logme and let m = 2m. Our register will consist of m+ polylog(N)
qubits. Note that the function x 7→ Ax (mod N) can be computed in polylog(N)
time and so we will assume that we can compute the map |x〉|y〉 7→ |x〉|y ⊕Ax
(mod N)〉 (where X denotes the representation of the number X ∈ {0, . . . , N−1}
as a binary string of length logN).3 Now we describe the order-finding algorithm.
It uses a tool of elementary number theory called continued fractions which
allows us to approximate (using a classical algorithm) an arbitrary real number
α with a rational number p/q where there is a prescribed upper bound on q (see
below)

Operation State (including normalizing factors)
Apply Fourier
transform to
the first m bits.

1√
m

∑
x∈Zm

|x〉)|0n〉

3To compute this map we may need to extend the register by some additional polylog(N)
many qubits, but we can ignore them as they will always be equal to zero except in intermediate
computations.

7

Operation State (including normalizing factors)
Compute the
transformation
|x〉|y〉 7→
|x〉|y ⊕ (Ax
(mod N))〉.

1√
m

∑
x∈Zm

|x〉|Ax (mod N)〉

Measure the
second register
to get a value
y0.

1√
K

∑K−1
`=0 |x0 + `r〉|y0〉 where x0 is the smallest
number such that Ax0 = y0 (mod N) and

K = b(m− 1− x0)/rc.

Apply the
Fourier
transform to
the first
register.

1√
m
√
K

(∑
x∈Zn

∑K−1
`=0 ω(x0+`r)x|x〉

)
|y0〉

In the analysis, it will suffice to show that this algorithm outputs the order r
with probability at least Ω(1/ logN) (we can always amplify the algorithm’s
success by running it several times and taking the smallest output).

Analysis: the case that r|m

We start by analyzing the algorithm in the case that m = rc for some integer
c. Though very unrealistic (remember that m is a power of 2!) this gives the
intuition why Fourier transforms are useful for detecting periods.

Claim: In this case the value x measured will be equal to ac for a random
a ∈ {0, . . . , r − 1}.

The claim concludes the proof since it implies that x/m = a/r where a is random
integer less than r. Now for every r, at least Ω(r/ log r) of the numbers in [r− 1]
are co-prime to r. Indeed, the prime number theorem says that there at least
this many primes in this interval, and since r has at most log r prime factors, all
but log r of these primes are co-prime to r. Thus, when the algorithm computes
a rational approximation for x/m, the denominator it will find will indeed be r.

To prove the claim, we compute for every x ∈ Zm the absolute value of |x〉’s
coefficient before the measurement. Up to some normalization factor this is∣∣∣∑c−1

`=0 ω
(x0+`r)x

∣∣∣ =
∣∣∣ωx0c

′c
∣∣∣ ∣∣∣∑c−1

`=0 ω
r`x
∣∣∣ = 1 ·

∣∣∣∑c−1
`=0 ω

r`x
∣∣∣ .

If c does not divide x then ωr is a cth root of unity, so
∑c−1
`=0 w

r`x = 0 by the
formula for sums of geometric progressions. Thus, such a number x would be
measured with zero probability. But if x = cj then ωr`x = wrcj` = ωMj = 1,
and hence the amplitudes of all such x’s are equal for all j ∈ {0, 2, . . . , r − 1}.

8

The general case

In the general case, where r does not necessarily divide m, we will not be able
to show that the measured value x satisfies m|xr. However, we will show that
with Ω(1/ log r) probability, (1) xr will be “almost divisible” by m in the sense
that 0 ≤ xr (mod m) < r/10 and (2) bxr/mc is coprime to r.

Condition (1) implies that |xr − cM | < r/10 for c = bxr/mc. Dividing by rM
gives

∣∣ x
m −

c
r

∣∣ < 1
10M . Therefore, cr is a rational number with denominator at

most N that approximates x
m to within 1/(10M) < 1/(4N4). It is not hard to

see that such an approximation is unique (again left as an exercise) and hence
in this case the algorithm will come up with c/r and output the denominator r.

Thus all that is left is to prove the next two lemmas. The first shows that there
are Ω(r/ log r) values of x that satisfy the above two conditions and the second
shows that each is measured with probability Ω((1/

√
r)2) = Ω(1/r).

Lemma 1: There exist Ω(r/ log r) values x ∈ Zm such that:

1. 0 < xr (mod m) < r/10

2. bxr/mc and r are coprime

Lemma 2: If x satisfies 0 < xr (mod m) < r/10 then, before the measurement
in the final step of the order-finding algorithm, the coefficient of |x〉 is at least
Ω(1√

r
).

Proof of Lemma 2 We prove the lemma for the case that r is coprime to m,
leaving the general case to the reader. In this case, the map x 7→ rx (mod m) is
a permutation of Z∗m. There are at least Ω(r/ log r) numbers in [1..r/10] that are
coprime to r (take primes in this range that are not one of r’s at most log r prime
factors) and hence Ω(r/ log r) numbers x such that rx (mod m) = xr−bxr/mcm
is in [1..r/10] and coprime to r. But this means that brx/mc can not have a
nontrivial shared factor with r, as otherwise this factor would be shared with rx
(mod m) as well.

Proof of Lemma 1: Let x be such that 0 < xr (mod m) < r/10. The absolute
value of |x〉’s coefficient in the state before the measurement is

1√
K
√
m

∣∣∣∣∣
K−1∑
`=0

ω`rx

∣∣∣∣∣ ,
where K = b(m− x0 − 1)/rc. Note that m

2r < K < m
r since x0 < N � m.

Setting β = ωrx (note that sincem 6 |rx, β 6= 1) and using the formula for the sum
of a geometric series, this is at least

√
r

2M

∣∣∣ 1−βdm/re

1−β

∣∣∣ =
√
r

2M
sin(θdm/re/2)

sin(θ/2) , where
θ = rx (mod m)

m is the angle such that β = eiθ (see Figure [quantum:fig:theta] for
a proof by picture of the last equality). Under our assumptions dm/reθ < 1/10
and hence (using the fact that sinα ∼ α for small angles α), the coefficient of x
is at least

√
r

4M dm/re ≥
1

8
√
r

9

This completes the proof of the main lemma. QED

Rational approximation of real numbers

In many settings, including Shor’s algorithm, we are given a real number in
the form of a program that can compute its first t bits in poly(t) time. We are
interested in finding a close approximation to this real number of the form a/b,
where there is a prescribed upper bound on b. Continued fractions is a tool in
number theory that is useful for this.

A continued fraction is a number of the following form: a0 + 1
a1+ 1

a2+
1

a3+...

for a0

a non-negative integer and a1, a2, . . . positive integers.

Given a real number α > 0, we can find its representation as an infinite fraction
as follows: split α into the integer part bαc and fractional part α − bαc, find
recursively the representation R of 1/(α− bαc), and then write

α = bαc+ 1
R
.

If we continue this process for n steps, we get a rational number, denoted
by [a0, a1, . . . , an], which can be represented as pn

qn
with pn, qn coprime. The

following facts can be proven using induction:

• p0 = a0, q0 = 1 and for every n > 1, pn = anpn−1 + pn−2, qn = anqn−1 +
qn−2.

• pn

qn
− pn−1

qn−1
= (−1)n−1

qnqn−1

Furthermore, it is known that
∣∣∣pn

qn
− α

∣∣∣< 1
qnqn+1

(∗) which implies that pn

qn
is

the closest rational number to α with denominator at most qn. It also means
that if α is extremely close to a rational number, say,

∣∣α− a
b

∣∣ < 1
4b4 for some

coprime a, b then we can find a, b by iterating the continued fraction algorithm
for polylog(b) steps. Indeed, let qn be the first denominator such that qn+1 ≥ b.
If qn+1 > 2b2 then (∗) implies that

∣∣pn

qn
− α

∣∣ < 1
2b2 . But this means that pn

qn
= a

b
since there is at most one rational number of denominator at most b that is so
close to α. On the other hand, if qn+1 ≤ 2b2 then since pn+1

qn+1
is closer to α than

a
b ,
∣∣pn+1
qn+1

− α
∣∣ < 1

4b4 , again meaning that pn+1
qn+1

= a
b . It’s not hard to verify that

qn ≥ 2n/2, implying that pn and qn can be computed in polylog(qn) time.

Quantum cryptogrpahy

There is another way in which quantum mechanics interacts with cryptography.
These “spooky actions at a distance” have been suggested by Weisner and
Bennet-Brassard as a way in which parties can create a secret shared key over

10

an insecure channel. On one hand, this concept does not require as much control
as general-purpose quantum computing, and so it has in fact been demonstrated
physically. On the other hand, unlike transmitting standard digital information,
this “insecure channel” cannot be an arbitrary media such as wifi etc.. but
rather one needs fiber optics, lasers, etc.. Unlike quantum computers, where
we only need one of those to break RSA, to actually use key exchange at scale
we need to setup these type of networks, and so it is unclear if this approach
will ever dominate the solution of Alice sending to Bob a Brink’s truck with the
shared secret key. People have proposed some other ways to use the interesting
properties of quantum mechanics for cryptographic purposes including quantum
money and quantum software protection.

11

https://en.wikipedia.org/wiki/Quantum_key_distribution#Quantum_Key_Distribution_Networks
https://en.wikipedia.org/wiki/Quantum_key_distribution#Quantum_Key_Distribution_Networks
https://en.wikipedia.org/wiki/Quantum_money
https://en.wikipedia.org/wiki/Quantum_money
http://www.scottaaronson.com/papers/noclone-ccc.pdf

	Shor's Algorithm
	From order finding to factoring and discrete log
	Finding periods of a function: Simon's Algorithm
	From Simon to Shor
	The Fourier transform over \Z_m
	Quantum Fourier Transform over \Z_m

	Shor's Order-Finding Algorithm.
	Analysis: the case that r|m

	Rational approximation of real numbers
	Quantum cryptogrpahy

