
Lecture 18: Multiparty secure computation:
Construction using Fully Homomorphic

Encryption

Boaz Barak

In the last lecture we saw the definition of secure multiparty computation, as well
as the compiler reducing the task of achieving security in the general (malicious)
setting to the passive (honest-but-curious) setting. In this lecture we will see
how using fully homomorphic encryption we can achieve security in the honest-
but-curious setting. We focus on the two party case, and so prove the following
theorem:

Theorem: Under LWE, for every two party functionality F there is a protocol
computing F in the honest but curious model.

Before proving the theorem it might be worthwhile to recall what is actually
the definition of secure multipary computation, when specialized for the k = 2
and honest but curious case. The definition significantly simplifies here since we
don’t have to deal with the possibility of aborts.

Definition (2-party honest but curious computation): Let F be (possibly
probabilistic) map of {0, 1}n × {0, 1}n to {0, 1}n × {0, 1}n. A secure protocol
for F is a two party protocol such for every party t ∈ {1, 2}, there exists an
efficient “ideal adversary” (i.e., efficient interactive algorithm) S such that for
every pair of inputs (x1, x2) the following two distributions are computationally
indistinguishable:

• The tuple (y1, y2, v) obtained by running the protocol on inputs x1, x2,
and letting y1, y2 be the outputs of the two parties and v be the view (all
internal randomness, inputs, and messages received) of party t.

• The tuple (y1, y2, v) that is computed by letting (y1, y2) = F (x1, x2) and
v = S(xt, yt).

That is, S, which only gets the input xt and output yt, can simulate all the
information that an honest-but-curious adversary controlling party t will view.

1

Constructing 2 party honest but curious computation from
fully homomorphic encryption

Let F be a two party functionality. Lets start with the case that F is deterministic
and that only Alice receives an output. We’ll later show an easy reduction from
the general case to this one. Here is a suggested protocol for Alice and Bob to
run on inputs x, y respectively so that Alice will learn F (x, y) but nothing more
about y, and Bob will learn nothing about x that he didn’t know before.

Protocol 2MPC:

• Assumptions: (G,E,D,EV AL) is a fully homomorphic encryption
scheme.

• Inputs: Alice’s input is x ∈ {0, 1}n and Bob’s input is y ∈ {0, 1}n. The
goal is for Alice to learn only F (x, y) and Bob learn nothing.

• Alice->Bob: Alice generates (e, d)←R G(1n) and sends e and c = Ee(x).

• Bob->Alice: Bob computes define f to be the function f(x) = F (x, y)
and sends c′ = EV AL(f, c) to Alice.

• Alice’s output: Alice computes z = Dd(c′).

First, note that if Alice and Bob both follow the protocol, then indeed at the
end of the protocol Alice will compute F (x, y). We now claim that Bob does
not learn anything about Alice’s input:

Claim B: For every x, y, there exists a standalone algorithm S such that S(y)
is indistinguishable from Bob’s view when interacting with Alice and their
corresponding inputs are (x, y).

Proof: Bob only receives a single message in this protocol of the form (e, c) where
e is a public key and c = Ee(x). The simulator S will generate (e, d)←R G(1n)
and compute (e, c) where c = Ee(0n). (As usual 0n denotes the length n string
consisting of all zeroes.) No matter what x is, the output of S is indistinguishable
from the message Bob receives by the security of the encryption scheme. QED

(In fact, this protocol is secure even against a malicious strategy of Bob- can
you see why?)

We would now hope that we can prove the same regarding Alice’s security. That
is prove the following:

Claim A: For every x, y, there exists a standalone algorithm S such that S(y)
is indistinguishable from Alice’s view when interacting with Bob and their
corresponding inputs are (x, y).

At this point, you might want to try to see if you can prove Claim A on your
own. If you’re having difficulties proving it, try to think whether it’s even true.

.

2

.

.

.

.

.

.

.

.

.

.

So, it turns out that Claim A is not generically true. The reason is the following:
the definition of fully homomorphic encryption only requires that EV AL(f,E(x))
decrypts to f(x) but it does not require that it hides the contents of f . For
example, for every FHE, if we modify EV AL(f, c) to output the first 100 bits
of the description of f then this would still be a secure FHE.1 Now we didn’t
exactly specify how we describe the function f(x) defined as x 7→ F (x, y) but
there are clearly representations in which the first 100 bits of the description
would reveal the first few bits of the hardwired constant y, hence meaning that
Alice will learn those bits from Bob’s message.

Thus we need to get a stronger property, known as circuit privacy: this is a
property that’s useful elsewhere too for FHE. Let us now define it:

Definition: Let E = (G,E,D,EV AL) be an FHE. We say that E satisfies
perfect circuit privacy2 if for every (e, d) output by G(1n) and every function
f : {0, 1}` → {0, 1} of poly(n) description size, and every ciphertexts c1, . . . , c`

and x1, . . . , x` ∈ {0, 1} such that ci is output by Ee(xi), the distribution of
EV ALe(f, c1, . . . , c`) is identical to the distribution of Ee(f(x)). That is, for
every z ∈ {0, 1}∗, the probability that EV ALe(f, c1, . . . , c`) = z is the same as
the probability that Ee(f(x)) = z. We stress that these probabilities are taken
only over the coins of the algorithms EV AL and E.

Perfect circuit privacy is a strong property, that also automatically implies that
Dd(EV AL(f,Ee(x1), . . . , Ee(x`))) = f(x) (can you see why?). In particular,
once you understand the definition, the following claim is an easy exercise (and
so one that is good for you to do to make sure you understood it):

1It’s true that strictly speaking, we allowed EV AL’s output to have length at most n,
while this would make the output be n + 100, but this is just a technicality that can be easily
bypassed, for example by having a new scheme that on security parameter n runs the original
scheme with parameter n/2 (and hence will have a lot of “room” to pad the output of EV AL
with extra bits).

2This is the same as what we called “the identical ciphertexts property” in the homework
assignment.

3

Claim (circuit privacy claim): If (G,E,D,EV AL) satisfies perfect circuit
privacy then if (e, d) = G(1n) then for every two functions f, f ′ : {0, 1}` →
{0, 1} of poly(n) description size and every x ∈ {0, 1}` such that f(x) =
f ′(x), and every algorithm A, |Pr[A(d,EV AL(f,Ee(x1), . . . , Ee(x`))) = 1] −
Pr[A(d,EV AL(f ′, Ee(x1), . . . , Ee(x`))) = 1]| < negl(n).

(Note that the algorithm A above gets the secret key as input, but still cannot
distinguish whether the EV AL algorithm used f or f ′.) In fact, the expression
above is even equal to zero, though for our applications bounding it by a
negligible function is enough. Indeed, we are fine with using the relaxed notion
of “imperfect” circuit privacy, defined as follows:

Definition: Let E = (G,E,D,EV AL) be an FHE. We say that E satisfies
statistical circuit privacy if for every (e, d) output by G(1n) and every function
f : {0, 1}` → {0, 1} of poly(n) description size, and every ciphertexts c1, . . . , c`

and x1, . . . , x` ∈ {0, 1} such that ci is output by Ee(xi), the distribution of
EV ALe(f, c1, . . . , c`) is equal up to negl(n) total variation distance to the
distribution of Ee(f(x)). This means that∑

z∈{0,1}∗ |Pr[EV ALe(f, c1, . . . , c`) = z]− Pr[Ee(f(x)) = z]| < negl(n)

where once again, these probabilities are taken only over the coins of the algo-
rithms EV AL and E.

If you find the above definition hard to parse, the most important points you
need to remember about it are the following:

• Statistical circuit privacy is as good as perfect circuit privacy for all
applications, and so you can imagine the latter notion when using it.

• Statistical circuit privacy can easier to achieve in constructions.

(The third point, which goes without saying, is that you can always ask clarifying
questions in class, Piazza, sections, or office hours. . .)

Intuitively, circuit privacy corresponds to what we need in the above protocol to
protect Bob’s security and ensure that Alice doesn’t get any information about
his input that she shouldn’t have from the output of EV AL, but before working
this out, let us see how we can construct fully homomorphic encryption schemes
satisfying this property.

Achieving circuit privacy in a fully homomorphic encryp-
tion

We now discuss how we can modify our fully homomorphic encryption schemes
to achieve the notion of circuit privacy. In the scheme we saw, the encryption of
a bit b, whether obtained through the encryption algorithm or EV AL, always
had the form of a matrix C over Zq (for q = 2

√
n) where Cv = bv + e for some

vector e that is “small” (e.g., for every i, |ei| < npolylog(n) � q = 2
√

n). However,

4

the EV AL algorithm was deterministic and hence this vector e is a function of
whatever function f we are evaluating and someone that knows the secret key v
could recover e and then obtain from it some information about f . We want to
make EV AL probabilistic and lose that information, and we use the following
approach

To kill a signal, drown it in lots of noise

That is, if we manage to add some additional random noise e′ that has magnitude
much larger than e, then it would essentially “erase” any structure e had. More
formally, we will use the following claim:

Claim: Let a ∈ Zq and T ∈ N be such that aT < q/2. If we let X be the
distribution obtained by taking x(mod q) for an integer x chosen at random in
[−T,+T] and let X ′ be the distribution obtained by taking a+ x(mod q) for
x chosen in the same way, then∑

y∈Zq
|Pr[X = y]− Pr[X ′ = y]| < |a|/T

Proof: This has a simple “proof by picture”: consider the intervals [−T,+T]
and [−T + a,+T + a] on the number line

------*---*----------------------*--------------------------*-----*----
-T -T+a 0 +T +T+a

Note that the symmetric difference of these two intervals is only about a 1/T
fraction of their union. More formally, X is the uniform distribution over the
2T + 1 numbers in the interval [−T,+T] while X ′ is the uniform distribution
over the shifted version of this interval [−T + a,+T + a]. There are exactly
2|a| numbers which get probability zero under one of those distributions and
probability (2T + 1)−1 < (2T)−1 under the other. QED

We will also use the following claim, which we leave verifying as an exercise:

Claim: If two distributions over numbers X and X ′ satisfy ∆(X,X ′) =∑
y∈Z |Pr[X = x]− Pr[Y = y]| < δ then the distributions Xm and X ′m over m

dimensional vectors where every entry is sampled independently from X or X ′
respectively satisfy ∆(Xm, X ′m) ≤ mδ.

(We will actually only use this claim for the distributions above; you can obtain
intuition for it by considering the m = 2 case where we compare the rectangles
of the forms [−T,+T]× [−T,+T] and [−T + a,+T + a]× [−T + b,+T + b]. You
can see that their union has size roughly 4T 2 while their symmetric difference
has size roughly 2T · 2a + 2T · 2b, and so if |a|, |b| ≤ δT then the symmetric
difference is roughly a 2δ fraction of the union.)

We will not provide the full details, but together these claims show that EV AL
can use bootstrapping to reduce the magnitude of the noise to roughly 2n0.1 and
then add an additional random noise of roughly, say, 2n0.2 which would make it
statistically indistinguishable from the actual encryption. (Here are some hints
on the full details: the idea is that in order to “re-randomize” a ciphertext C we

5

need a very noisy encryption of zero and add it to C. The normal encryption will
use noise of magnitude 2n0.2 but we will provide an encryption of the secret key
with smaller magnitude 2n0.1/polylog(n) so we can use bootstrapping to reduce
the noise. The main idea that allows to add noise is that at the end of the day,
our scheme boils down to LWE instances that have the form (c, σ) where c is a
random vector in Zn−1

q and σ = 〈c, s〉+ a where a ∈ [−η,+η] is a small noise
addition. If we take any such input and add to σ some a′ ∈ [−η′,+η′] then we
create the effect of completely re-randomizing the noise. However, completely
analyzing this requires non-trivial amount of care and work.)

6

	Constructing 2 party honest but curious computation from fully homomorphic encryption
	Achieving circuit privacy in a fully homomorphic encryption

