Lecture 12: Lattice based crypto

Boaz Barak

Lattice based encryption - some history and sig-
nificance.

Lattice based public key encryption (and its cousins known as knapsack and
coding based encryption) have almost as long a history as discrete logarithm
and factoring based schemes. Already in 1976, right after the Diffie-Hellman
key exchange was discovered (and before RSA), Ralph Merkle was working on
building public key encryption from the NP hard knapsack problem (see Diffie’s
recollection). This can be thought of as the task of solving a linear equation
of the form Az = y (where A is a given matrix, y is a given vector, and the
unknown are x) over the real numbers but with the additional constraint that
2 must be either 0 or 1. His proposal evolved into the Merkle-Hellman system
proposed in 1978.

McEliece proposed in 1978 a system based on the difficulty of the decoding
problem for general linear codes. This is the task of solving noisy linear equations
where one is given A and y such that y = Ax + e for a “small” error vector
e, and needs to recover z. Crucially, here we work in a finite field, such as
working modulo ¢ for some prime ¢ (that can even be 2) rather than over the
reals or rationals. There are special matrices A* for which we know how to
solve this problem efficiently: these are known as efficiently decodable error
correcting codes. McEliece suggested a scheme where the key generator lets A be
a “scrambled” version of a special A* (based on the Goppa algebraic geometric
code). So, someone that knows the scrambling could solve the problem, but
(hopefully) someone that doesn’t know it wouldn’t. McEliece’s system has so far
not been broken.

In a 1996 breakthrough, Ajtai showed a private key scheme based on integer
lattices that had a very curious property- its security could be based on the
assumption that certain problems were only hard in the worst case, and moreover
variants of these problems were known to be NP hard. This ignited hope that
we could perhaps realize the old dream of basing crypto on the mere assumption
that P # NP. Alas, we know understand that there are fundamental barriers
to this approach. Nevertheless, Ajtai’s work attracted signifincant interest, and
within a year both Ajtai and Dwork, as well as Goldreich, Goldwasser and Halevi
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came up with lattice based constructions for public key encryption (the former
based also on worst case assumptions). At about the same time, Hoffstein,
Pipher, and Silverman came up with their NTRU public key system which is
based on stronger assumptions but offers better performance, and they started a
company around it together with Daniel Lieman.

You may note that I haven’t yet said what lattices are; we will do so later,
but for now if you simply think of questions involving linear equations modulo
some prime ¢, you will get enough of the intuition that you need. (The lattice
viewpoint is more geometric, and we’ll discuss it more below; it was first used
to attack cryptosystems and in particular break the Merkle-Hellman knapsack
scheme and many of its variants.)

Lattice based cryptography has captured a lot of attention recently from both
theory and practice. In the theory side, many cool new constructions are now
based on lattice based cryptography, and chief among them fully homomorphic
encryption, as well as indistinguishability obfuscation (though the latter’s secu-
rity’s foundations is still far less solid). On the applied side, the steady advances
in the technology of quantum computers have finally gotten practitioners worried
about RSA, Diffie Hellman and Elliptic Curves. While current constructions for
quantum computers are nowhere near being able to, say, factor larger numbers
that can be done classically (or even than can be done by hand), given that it
takes many years to develop new standards and get them deployed, many believe
the effort to transition away from these factoring/dlog based schemes should
start today. The NSA has recently suggested that it plans to initiate the process
to “transition to quantum resistant algorithms in the not too distant future”;
see also this very interesting FAQ on this topic. Note that cryptography has
the peculiar /unfortunate feature that if a machine is built that can factor large
integers in 20 years, it can still be used to break the communication we transmit
today, provided this communication was recorded. So, if you have some data that
you expect you’d want still kept secret in 20 years (as many government and
commercial entities do), you might have reasons to worry. Currently lattice based
cryptography is the only real “game in town” for potentially quantum-resistant
public key encryption schemes.

A world without Gaussian elimination

The general approach people used to get a public key encryption is to obtain a
hard computational problem with some mathematical structure. We’ve seen this
in the discrete logarithm problem, where the task is to invert the map a — g¢
(mod p), and the integer factoring problem, where the task is to invert the map
a,b +— a-b. Perhaps the simplest structure to consider is the task of solving
linear equations. Pretend that we didn’t know of Gaussian elimination, and
that if we picked a “generic” matrix A then the map z — Az would be hard
to invert. (Here and elsewhere, our default interpretation of a vector z is as a
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column vector, and hence if z is n dimensional and A is m x n then Az is m
dimensional. We use 2" to denote the row vector obtained by transposing x.)
Could we use that to get a public key encryption scheme?

Here is a concrete approach. Let us fix some prime ¢ (think of it as polynomial
size, e.g., q is smaller than 1024 or so, though people can and sometimes do
consider ¢ of exponential size), and all computation below will be done modulo
q- The secret key is a vector z € Zy, and the public key is (A4,y) where A is a
random m X n matrix with entries in Z, and y = Az. Under our assumption,
it is hard to recover the secret key from the public key, but how do we use the
public key to encrypt? The crucial observation is that even if we don’t know how
to solve linear equations, we can still combine several equations to get new ones.
To keep things simple, let’s consider the case of encrypting a single bit. We think
of the public key as the set of equations (a1, x) = y1,...,{(am,T) = Ym in the
unknown variables z. The idea is that to encrypt the value 0 we will generate
a new correct equation on x, while to encrypt the value 1 we will generate an
incorrect equation. To decrypt a ciphertext (a,0) € ZZH7 we think of it as
an equation of the form (a,2) = o and output 1 if and only if the equation is
correct.

How does the encrypting algorithm, that does not know zx, get a correct or
incorrect equation on demand? One way would be to simply take two equations
(a;,z) = y; and (a;,z) = y; and add them together to get the equation (a; +
aj,x) = y; + y;. This equation is correct and so one can use it to encrypt 0,
while to encrypt 1 we simply add some fixed nonzero number o € Z; to the
right hand side to get the incorrect equation (a; + a;, z) = y; +y; + . However,
even if it’s hard to solve for x given the equations, an attacker (who also knows
the public key (A4,y)) can try itself all pairs of equations and do the same thing.
Our solution for this is simple- just add more equations! If the encryptor adds
a random subset of equations then there are 2" possibilities for that, and an
attacker can’t guess them all. Thus, at least intuitively, the following encryption
scheme would be “secure” in the Gaussian-elimination free world of attackers
that haven’t taken freshman linear algebra:

o Key generation: Pick random m x n matrix A over Z,, and x <—g Zy, the
secret key is « and the public key is (A, y) where y = Ax.

o FEncryption: To encrypt a message b € {0, 1}, pick w € {0,1}™ and output
w' A, (w,y) + ab for some fixed nonzero « € Z,.

e Decryption: To decrypt a ciphertext (a, o), output 0 iff (a,x) = 0.

(Please make sure that you see why this description corresponds to the previous
one; as usual all calculations are done modulo q.)



Security in the real world.

Like it or not (and cryptographers typically don’t) Gaussian elimination is
possible in the real world and the scheme above is completely insecure. However,
the Gaussian elimination algorithm is extremely brittle.

Errors tend to be amplified when you combine equations. To see why, let us
recall how Gaussian elimination works. Think of m = n for simplicity. Given
equations Az = y in the unknown variables z, the goal of Gaussian elimination
is to transform them into the equations Iz =y’ where I is the identity matrix
(and hence the solution is simply « = 3’). Recall how we do it: by rearranging
and scaling, we can assume that the top left corner of A is equal to 1, and then
we add the first equation to the other equations (scaled apropriately) to zero
out the first entry in all the other rows of A (i.e., make the first column of A
equal to (1,0,...,0)) and continue onwards to the second column and so on
and so forth. Now, suppose that the equations were noisy, in the sense that we
added to y a vector e € Z" such that [e;| < dq for every i. (Because over Z,
we can think of ¢ — 1 also as the number —1, and so on, if a € Z,, we define
|a| to be the minimum of a and ¢ — a. This ensures the absolute value satisfies
the natural property of |a| = | — a|.) Even ignoring the effect that our scaling
has on this, simply adding the first equation to the rest would typically tend to
increase their relative error from = ¢ to ~ 2. Now, when we repeat the process,
we increase the error from ~ 20 to = 46, and we see that by the time we’re done
dealing with all n variables, we have equations either error level roughly 2™§. So,
unless § was truly tiny (and ¢ truly big, in which case the difference between
working in Z, and simply working with integers or rationals disappears), the
resulting equations have the form Ix = 3’ + ¢’ where €’ is so big that we get no
information on .

The Learning With Errors (LWE) conjecture is that this is inherent:

Conjecture (Learning with Errors, Regev 2005): Let ¢ = ¢(n) and § =
d(n) be some functions. The Learning with Error (LWE) conjecture with respect
to ¢,0d, is that for every polynomial-time adversary E and m = poly(n), the
probability that E(A, Az 4+ e) = x is negligible, where A is a random m x n
matrix in Zg, @ is random in Zj, and e € Zg" is a random noise vector with
magnitude 6q.! The LWE conjecture is that for ever polynomial p(n) there is some
polynomial ¢(n) such that LWE holds with respect to ¢(n) and §(n) = 1/p(n).?

1One can think of e as chosen by simply letting every coordinate be chosen at random in
{—d8q,—d6q+1,...,40q}. For technical reasons, we sometimes consider other distributions and
in particular the discrete Gaussian distribution which is obtained by letting every coordinate
of e be an independent Gaussian random variable with standard deviation dq, conditioned on
it being an integer. (A closely related distribution is obtained by picking such a Gaussian
random variable and then rounding it to the nearest integer.)

2People sometimes also consider variants where both p(n) and g(n) can be as large as
exponential.



Search to decision

It turns out that if the LWE is hard, then it is even hard to distinguish between
random equations and nearly correct ones:

Theorem (Search to decision reduction): If the LWE conjecture is true
then for every ¢ = poly(n) and § = 1/poly(n) and m = poly(n), the following
two distributions are computationally indistinguishable:

e {(A, Az +e)} where A is random m X n matrix in Zg, = is random in Zy
and e € Z" is random noise vector of magnitude 4.

e {(A,y)} where A is random m x n matrix in Z, and y is random in Z}"

Proof: Suppose that we had a decisional adversary D that succeeds in distin-
guishing the two distributions above with bias €. For example, suppose that
D outputs 1 with probability p + € on inputs from the first distribution, and
outputs 1 with probability p on inputs from the second distribution. We will
show how we can use this to obtain a polynomial-time algorithm .S that on input
m noisy equations on x and a value a € Z,, will learn with high probability
whether or not the first coordinate of x equals a. Clearly, we can repeat this
for all the possible q values of a to learn the first coordinate exactly, and then
continue in this way to learn all coordinates.

Our algorithm S gets as input the pair (A, y) where y = Az + e and we need to
decide whether x; = a. Now consider the instance A + (r||0™|| - - - ||0™),y + ar,
where 7 is a random vector in Zg* and the matrix (r[0™| ---[|0™) is simply the
matrix with first column equal to r and all other columns equal to 0. Note
that if A is random then A + 7{|0™|| - - ||0™) is random as well. Now note that
Az + (r]0™ - -]|0™)x = Az +x1r and hence if 21 = a then we still have an input
of the same form. However, if 21 # a then this amounts to adding a non-zero
multiple of the random vector r to the noise vector, and hence we get an instance
of the form (A’,y’) with random A’ y’.

Hence if we send this input to our the decision algorithm D, then we would get 1
with probability p + € if 1 = a and an output of 1 with probability p otherwise.
Now the crucial observation is that if our decision algorithm D requires m
equations to succeed with bias €, we can use 100mn/e? equations (which is
still polynomial) to invoke it 100n/€? times. This allows us to distinguish with
probability 1 — 27™ between the case that D outputs 1 with probability p + €
and the case that it outputs 1 with probability p (this follows from the Chernoff
bound we discussed in the mathematical backgroudn handout; can you see why?).
Hence by using polynomially more samples than the decision algorithm D, we
get a search algorithm S that can actually recover x. QED

An LWE based encryption scheme

We can now show the secure variant of our original encryption scheme:



e Parameters: Let 6(n) = 1/n* and let ¢ = poly(n) be a prime such that
LWE holds w.r.t. q,5. We let m = n?loggq.

o Key generation: Pick z € Zy. The private key is z and the public key is
(A,y) with y = Az + e with e a d-noise vector and A a random m X n
matrix.

o Encrypt: To encrypt b € {0, 1} given the key (A, y), pick w € {0,1}™ and
output w' A, (w,y) + b|q/2].

e Decrypt: To decrypt (a, o), output 0 iff |{a,x) — o] < ¢/10.

Unlike our typical schemes, here it is not immediately clear that even get the
right answer, but we do:

Claim: With high probability, the decryption of the encryption of b equals b.

Proof: (w' A, z) = (w, Az). Hence, if y = Az+e then (w,y) = (w' A, x)+(w, e).
But since every coordinate of w is either 0 or 1, [{(w,e)| < dmq < ¢ < ¢/10.?
So, we get that if a = w' A and ¢ = (w,y) + blq/2] then o — (a,2) = (w,e) +
blg/2] which will be smaller than ¢/10 iff b = 0. QED

We now claim that this scheme is CPA secure. For a public key encryption
scheme with messages that are just bits, this just means that an encryption of 0
is indistinguishable from an encryption of 1, even given the public key. This will
follow from the following lemma:

Lemma: Assuming the LWE, the distribution (A,y = Az +e¢), (w' A, (w',y))
(where all values are chosen as above) is indistinguishable from the distribution
(A,9), (a,0) where y is completely random in Z}", a is random and independent
in Z; and o is random and independent in Z.

(I leave to the reader to verify that this lemma implies security; the idea is
that it shows that the concatenation of the public key and encryption of 0
is indistinguishable from something that is completely random, and you can
use it to show that the concatenation of the public key and encryption of 1 is
indistinguishable from the same thing, and then finish using the hybrid argument.

)

Proof: By the search to decision reduction, the distribution above is indistin-
guishable from the distribution where y is completely random. However, in this
case I claim that if we choose w at random in {0,1}™ and let (a,0) = w' (A|y)
then (a,o0) would be a (close to) completely uniform and independent vector
in Z;H‘l. We will not do the whole proof (which uses the mod ¢ version of the
leftover hash lemma we mentioned before) but the idea is simple. Let A’ = (Al|y)
which in our case is a completely random matrix. This mans that the map
w — w' A’ is essentially a pasrwise independent hash function mapping Ly

3In fact, due to the fact that the signs of the error vector’s entries are different, we expect
the errors to have significant cancellations and hence we would expect |[(w,e)| to only be
roughly of magnitude \/mdgq, but this is not crucial for our discussions.



to Z;"H. Now when we choose w at random in {0,1}™, it is coming from a
distribution with m bits of entropy. If m > (n + 1)loggq, then because the
output of this function is so much smaller than m, we expect it to be completely
uniform. QED

This proof is quite subtle and requires some thought. To read more about this,
you can look at the survey of Oded Regev, “On the Learning with Error Problem”
Sections 3 and 4.

But what are lattices?

You can think of a lattice as a discrete version of a subspace. A lattice L is
simply a subset of R™ such that if u,v € L and a, b are integers then au+bv € L.
A lattice is given by a basis which simply a matrix B such that every vector
u € L is obtained as u = Bx for some vector of integers x. It can be shown that
we can assume without loss of generality that B is full dimensional and hence
it’s an n by n invertible matrix. Note that given a basis B we can generate
vectors in L, as well as test whether a vector v is in L by testing if B~ 'v is an
integer vector. There can be many different bases for the same lattice, and some
of them are easier to work with than others.

Some classical computational questions on lattices are:

o Shortest vector problem: Given a basis B for L, find the nonzero vector v
with smallest norm in L.

o Closest vector problem: Given a basis B for L and a vector u that is not
in L, find the closest vector to u in L.

o Bounded distance decoding: Given a basis B for L and a vector u of the
form u = v 4+ e where v is in L, and e is a particularly short “error” vector
(so in particular no other vector in the lattice is within distance ||e|| to u),
recover v. Note that this is a special case of the closest vector problem.

In particular, if V' is a linear subspace of Zg, we can think of it also as a lattice

V of R™ where we simply say that that a vector @ is in V if all of @’s coordinates
are integers and if we let u; = 4; (mod ¢) then u € V. The learning with error
task of recovering x from Ax + e can then be thought of as an instance of the
bounded distance decoding problem for V.

Ring based lattices

One of the biggest issues with lattice based cryptosystem is the key size. In
particular, the scheme above uses an m x n matrix where each entry takes logq
bits to describe. (It also encrypts a single bit using a whole vector, but more
efficient “multi-bit” variants are known.) Schemes using ideal lattices are an
attempt to get more practical variants. These have very similar structure except
that the matrix A chosen is not completely random but rather can be described
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by a single vector. One common variant is the following: we fix some polynomial
p over Z, with degree n and then treat vectors in Zy as the coefficients of n — 1
degree polynomials and always work modulo this polynomial p(). (By this I
mean that for every polynomial ¢ of degree at least n we write ¢ as ps + r
where p is the polynomial above, s is some polynomial and r is the “remainder”
polynomial of degree < n; then ¢ (mod p) = r.) Now for every fixed polynomial
t, the operation A; which is defined as s — ts (mod p) is a linear operation
mapping polynomials of degree at most n — 1 to polynomials of degree at most
n — 1, or put another way, it is a linear map over Z;. However, the map A4
can be described using the n cofficients of ¢ as opposed to the n? description of
a matrix. It also turns out that by using the Fast Fourier Transform we can
evaluate this operation in roughly n steps as opposed to n%. The ideal lattice
based cryptosystem use matrices of this form to save on key size and computation
time. It is still unclear if this structure can be used for attacks; recent papers
attacking principal ideal lattices have shown that one needs to be careful about
this.
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