
Lecture 11: Concrete candidates for public key
crypto

Boaz Barak

In the previous lecture we talked about public key cryptography and saw the
Diffie Hellman system and the DSA signature scheme. In this lecture, we will
see the RSA trapdoor function and how to use it for both encryptions and
signatures.

Some number theory.

(See Shoup’s excellent and freely available book for extensive coverage of these
and many other topics.)

For every number m, we define Zm to be the set {0, . . . ,m−1} with the addition
and multiplication operations modulo m. When two elements are in Zn then
we will always assume that all operations are done modulo m unless stated
otherwise. We let Z∗n = {a ∈ Zn : gcd(a,m) = 1}. Note that n is prime if and
only if |Z∗m| = m − 1. For every a ∈ Z∗m we can find using the extended gcd
algorithm an element b (typically denoted as a−1) such that ab = 1 (can you see
why?). The set Z∗m is an abelian group with the multiplication operation, and
hence by the observations of the previous lecture, a|Z∗

m| = 1 for every a ∈ Z∗m.
In the case that m is prime, this result is known as “Fermat’s Little Theorem”
and is typically stated as ap−1 = 1 (mod p) for every a 6= 0.

Note on n bits vs a number n: One aspect that is often confusing
in number-theoretic based cryptography, is that one needs to always
keep track whether we are talking about “big” numbers or “small”
numbers. In many cases in crypto, we use n to talk about our key
size or security parameter, in which case we think of n as a “small”
number of size 100− 1000 or so. However, when we work with Z∗m
we often think of m as a “big” number having about 100 − 1000
digits; that is m would be roughly 2100−−− 21000 or so. I will try to
reserve the notation n for “small” numbers but may sometimes forget
to do so, and other descriptions of RSA etc.. often use n for “big”
numbers. It is important that whenever you see a number x, you
make sure you have a sense whether it is a “small” number (in which
case poly(x) time is considered efficient) or whether it is a “large”

1

http://www.shoup.net/ntb/

number (in which case only poly(log(x)) time would be considered
efficient).

One procedure we often need is to find a prime of n bits. The typical way people
do it is by choosing a random n-bit number m, and testing whether it is prime.
This relies on the following two facts:

Theorem 1: The probability that a random n bit number is prime is at least
Ω(1/n). In fact, it is (1 ± o(1)) 1

n ln 2 by the famous Prime Number Theorem
obtained in the 1890’s by Hadamard and de la Vall’{e}e Poussin).

Theorem 2: There is an poly(n)-time algorithm to test whether a given n-
bit number is prime or composite. This was first shown in 1970’s by Solovay,
Strassen, Miller and Rabin via a probabilistic algorithm (that can make a mistake
with probability exponentially small in the number of coins it uses), and in a
2002 breakthrough Agrawal, Kayal, and Saxena gave a deterministic polynomial
time algorithm for the same problem.

We now show “poor man’s versions” of both theorems:

Lemma 1: The probability that a random n bit number is prime is at least
Ω(1/n).

Proof: Let N = 2n. We need to show that the number of primes between
1 and N is at least Ω(N/ logN). Consider the number

(2N
N

)
= 2N !

N !N ! . By
Stirling’s formula we know that log

(2N
N

)
= (1 − o(1))2N and in particular

N ≤ log
(2N

N

)
≤ 2N . Also, by the formula using factorials, all the prime factors

of
(2N

N

)
are between 0 and 2N , and each factor P cannot appear more than

k = b log 2N
log P c times. Indeed, for every N , the number of times P appears in

the factorization of N ! is
∑

ib
N
P i c, since we get bN

P c times a factor P in the
factorizations of {1, . . . , N}, b N

P 2 c times a factor of the form P 2, etc. . . Thus
the number of times P appears in the factorization of

(2N
N

)
= (2N)!

N !N ! is equal to∑
ib

2N
P i c− 2b N

P i c: a sum of at most k elements (since P k+1 > 2N) each of which
is either 0 or 1.

Thus,
(2N

N

)
≤
∏

1≤P≤2N
P prime

P
b log 2N

log P c. Taking logs we get that N ≤ log
(2N

N

)
≤∑

P prime∈[2n]b
log 2N
log P c logP ≤∑

P prime∈[2n] log 2N

establishing that the number of primes in [1, N] is Ω(N
log N). QED

Lemma 2: There is a probabilistic polynomial time algorithm A that on input
a number m, if m is prime A outputs YES with probability 1 and if A is not even
a “pseudoprime” it outputs NO with probability at least 1/2. (The definition of
“pseudo-prime” will be clarified in the proof below.)

Proof: The algorithm is very simple and is based on Fermat’s Little Theorem:

2

on input m, pick a random a ∈ {2, . . . ,m− 1}, and if gcd(a,m) 6= 1 or am−1 6= 1
(mod m) return NO and otherwise return YES.

By Fermat’s little theorem, the algorithm will always return YES on a prime m.
We define a “pseudoprime” to be a non-prime number m such that am−1 = 1
(mod m) for all a such that gcd(a,m) = 1.
If n is not a pseudoprime then the set S = {a ∈ Z∗m : am−1 = 1} is a strict
subset of Z∗m. But it is easy to see that S is a group and hence |S| must divide
|Z∗n| and hence in particular it must be the case that |S| < |Z∗n|/2 and so with
probability at least 1/2 the algorithm will output NO. QED

Lemma 2 on its own might not seem very meaningful since it’s not clear how many
pseudoprimes are there. However, it turns out these pseudoprimes, also known
as “Carmichael numbers”, are much less prevalent than the primes (there are
about N/2−Θ(log N/ log log N) � N/ logN of those between q and N). Moreover,
as mentioned above, there are better algorithms that succeed for all numbers.

In contrast to testing if a number is prime or composite, there is no known
efficient algorithm to actually find the factorization of a composite number. As
we mentioned, the best known algorithms run in time roughly 2Õ(n1/3).

Fields

If p is a prime then Zp is a field which means it is closed under addition and
multiplication and has 0 and 1 elements. One property of a field is the following:

Theorem: If f is a nonzero polynomial of degree d over Zp then there are at
most d distinct inputs x such that f(x) = 0.

(If you’re curious why, you can see that the task of, given x1, . . . , xd+1 finding
the coefficients for a polynomial vanishing on the xi’s amounts to solving a linear
system in d+ 1 variables with d+ 1 equations that are independent due to the
non-singularity of the Vandermonde matrix.)

In particular every x ∈ Zp has at most two square roots. In fact, just like over
the reals, every x ∈ Zp either has no square roots or exactly two square roots of
the form ±s.

We can efficiently find square roots modulo a prime. In fact, the following result
is known:

Theorem: There is a probabilistic poly(log p, d) time algorithm to find the roots
of a degree d polynomial over Zp.

This is a special case of the problem of factoring polynomials over finite fields,
shown in 1967 by Berlekamp and on which much other work has been done; see
Chapter 20 in Shoup).

3

http://www.shoup.net/ntb/

Chinese remainder theorem

Suppose that m = pq is a product of two primes. In this case Z∗m does not
contain_all_ the numbers from 1 to m− 1. Indeed, all the numbers of the form
p, 2p, 3p, . . . , (q − 1)p and q, 2q, . . . , (p− 1)q will have non-trivial g.c.d. with m.
There are exactly q − 1 + p− 1 such numbers (because p and q are prime all the
numbers of the forms above are distinct). Hence |Z∗m| = m−1−(p−1)−(q−1) =
pq − p− q + 1 = (p− 1)(q − 1).

Note that |Z∗m| = |Z∗p| · |Z∗q . It turns out this is no accident:

Theorem (Chinese Remainder Theorem – CRT): If m = pq then there
is an isomorphism ϕ : Z∗m → Z∗p × Z∗q . That is, ϕ is one to one and onto and
maps x ∈ Z∗m into a pair (ϕ1(x), ϕ2(x)) ∈ Z∗p×Z∗q such that for every x, y ∈ Z∗m:
* ϕ1(x + y) = ϕ1(x) + ϕ1(y) (mod p) * ϕ2(x + y) = ϕ2(x) + ϕ2(y) (mod q) *
ϕ1(x · y) = ϕ1(x) · ϕ1(y) (mod p) * ϕ2(x · y) = ϕ2(x) · ϕ2(y) (mod q)

Proof: ϕ simply maps x ∈ Z∗m to the pair (x mod p, x mod q). Verifying that
it satisfies all desired properties is a good exercise. QED

In particular, for every polynomial f() and x ∈ Z∗m, f(x) = 0 (mod m) iff
f(x) = 0 (mod p) and f(x) = 0 (mod q). Therefore finding the roots of a
polynomial f() modulo a composite m is easy if you know m’s factorization.
However, if you don’t know the factorization then this is hard. In particular,
extracting square roots is as hard as finding out the factors:

Theorem (Square root extraction implies factoring): Suppose that m =
pq there is an efficient algorithm A such that for every a ∈ Z∗m, A(a2 (mod m)) =
b such that a2 = b2 (mod m). Then, there is an efficient algorithm to recover
p, q from m.

Proof: Suppose that there is such an algorithm A. Using the CRT we can define
f : Z∗p×Z∗q → Z∗p×Z∗q as f(x, y) = ϕ(A(ϕ−1(x2, y2))) for all x ∈ Z∗p and y ∈ Z∗q .
Now, for any x, y let (x′, y′) = f(x, y). Since x2 = x′2 (mod p) and y2 = y′2

(mod q) we know that x′ ∈ {±x} and y′ ∈ {±y}. Since flipping signs doesn’t
change the value of (x′, y′) = f(x, y), by flipping one or both of the signs of x or
y we can ensure that x′ = x and y′ = −y. Hence (x, x′)− (y, y′) = (0, 2y). In
other words, if c = ϕ−1(x − x′, y − y′) then c = 0 (mod p) but c 6= 0 (mod q)
which in particular means that the greatest common divisor of c and m is q. So,
by taking gcd(A(ϕ−1(x, y)),m) we will find q, from which we can find p = m/q.

This almost works, but there is a question of how can we find ϕ−1(x, y), given
that we don’t know p and q? The crucial observation is that we don’t need
to. We can simply pick a value a at random in {1, . . . ,m}. With very high
probability (namely (p−1+q−1)/pq) a will be in Z∗m, and so we can imagine this
process as equivalent to the process of taking a random x ∈ Z∗p, a random y ∈ Z∗q
and then flipping the signs of x and y randomly and taking a = ϕ(x, y). By the
arguments above with probability at least 1/4, it will hold that gcd(a−A(a2),m)
will equal q. QED

4

Note that this argument generalizes to work even if the algorithm A is an average
case algorithm that only succeeds in finding a square root for a significant fraction
of the inputs. This observation is crucial for cryptographic applications.

The RSA and Rabin functions

We are now ready to describe the RSA and Rabin trapdoor functions:

Def: Given a number m = pq and e such that gcd((p−1)(q−1), e) = 1, the RSA
function w.r.t m and e is the map fm,e : Z∗m → Z∗m such that RSAm,e(x) = xe

(mod m).

Def: Given a number m = pq, the Rabin function w.r.t. m, is the map
Rabinm : Z∗m → Z∗m such that Rabinm(x) = x2 (mod m).

Note that both maps can be computed in polynomial time. Using the theorem
above, we know that both functions can be inverted efficiently if we know the
factorization (at least for not too large e; indeed e is often). However, it turns
out that this is a much too big of a Hammer to solve this, and there are direct
and simple inversion algorithms (see homework exercises). By the discussion
above, inverting the Rabin function amounts to factoring m. No such result is
known for the RSA function, but there is no better algorithm known to attack
it than proceeding via factorization of m. The RSA function has the advantage
that it is a permutation over Z∗m:

Lemma: RSAm,e is one to one over Z∗m.

Proof: Suppose that RSAm,e(a) = RSAm,e(a′). By the CRT, it means that
there is (x, y) 6= (x′, y′) ∈ Z∗p × Z∗q such that xe = x′e (mod p) and ye = y′e

(mod q). But if that’s the case we get that (xx′−1)e = 1 (mod p) and (yy′−1)e = 1
(mod q). But this means that e has to be a multiple of the order of xx′−1 and
yy′−1 (at least one of which is not 1 and hence has order > 1). But since the
order always divides the group size, this implies that e has to have non-trivial
gcd with either |Z∗p | or |Z∗q | and hence with (p− 1)(q − 1). QED

Note: The RSA trapdoor function is known also as “plain RSA encryption”.
This is because initially Diffie and Hellman (and following them, RSA) thought
of an encryption scheme as a deterministic procedure. Today however we know
that it is insecure to use a trapdoor function directly as an encryption scheme
without adding some randomization.

Abstraction: trapdoor permutations

Def: We can abstract away the particular construction of the RSA and Rabin
functions to talk about a general trapdoor permutation family (TDP). This is
a family of functions {pk} such that for every k ∈ {0, 1}n, the function pk is a
permutation on {0, 1}n and the map k, x 7→ pk(x) is efficiently computable, but:

5

* For every efficient adversary A, Pry∈{0,1}n [A(y) = p−1
k (y)] = negl(n). * There

is a key generation algorithm G such that on input 1n it outputs a pair (k, τ)
such that the map τ, y 7→ p−1

k (y).

Note: The reader might note that the RSA function is not a permutation over
the set of strings but rather over Z∗m for some m = pq. However, if we find
primes p, q in the interval [2n/2(1−negl(n)), 2n/2], then m will be in the interval
[2n(1−negl(n)), 2n] and hence Z∗m (which has size pq−p−q+1 = 2n(1−negl(n)))
can be thought of as essentially identical to {0, 1}n, since we will always pick
elements from {0, 1}n at random and hence they will be in Z∗m with probability
1 − negl(n). It is widely believed that for every sufficiently large n there is a
prime in the interval [2n − poly(n), 2n] (this follows from the Extended Reimann
Hypothesis) and Baker, Harman and Pintz proved that there is a prime in the
interval [2n − 20.6n, 2n].1

Public key encryption from trapdoor permutations

Here is how we can get a public key encryption from a trapdoor permutation
scheme {pk}.

• Key generation: Run the key generation algorithm of the TDP to get (k, τ).
k is the public encryption key and τ is the secret decryption key.

• Encryption: To encrypt a message m with key k ∈ {0, 1}n, choose x ∈
{0, 1}n and output (pk(x), H(x) ⊕ m) where H : {0, 1}n → {0, 1}` is a
hash function we model as a random oracle.

• Decryption: To decrypt the ciphertext (y, z) with key τ , output m =
H(p−1

k (y))⊕ z.

Theorem: If {pk} is a secure TDP and H is a random oracle then the above
scheme is CPA secure public key encryption scheme.

Proof: (To be completed)

Note: We do not need to use a random oracle to get security in this scheme,
especially if ` is sufficiently short. We can replace H() with a hash function of
specific properties known as a hard core construction; this was first shown by
Goldreich and Levin.

Digital signatures from trapdoor permutations

Here is how we can get digital signatures from trapdoor permutations {pk}. This
is known as the “full domain hash” signatures.

1Another, more minor issue is that the description of the key might not have the same
length as log m; I defined them to be the same for simplicity of notation, and this can be
ensured via some padding and concatenation tricks.

6

• Key generation: Run the key generation algorithm of the TDP to get (k, τ).
k is the public verification key and τ is the secret signing key.

• Signature: To sign a message m with key τ , we output p−1
k (H(m)) where

H : {0, 1}∗ → {0, 1}n is a hash function modeled as a random oracle.
• Verification: To verify a message-signature pair (m,x) we check that
pk(x) = H(m).

Theorem: If {pk} is a secure TDP and H is a random oracle then the above
scheme is chosen message attack secure digital signature scheme.

Proof: (To be completed).

Key exchange, authenticated and password-authenticated key
exchange

(To be completed)

7

	Some number theory.
	Fields
	Chinese remainder theorem
	The RSA and Rabin functions
	Abstraction: trapdoor permutations
	Public key encryption from trapdoor permutations
	Digital signatures from trapdoor permutations
	Key exchange, authenticated and password-authenticated key exchange

