
Lecture 8: Key derivation, protecting passwords,
slow hashes, Merkle trees

Boaz Barak

Last lecture we saw the notion of cryptographic hash functions which are functions
that behave like a random function, even in settings (unlike that of standard
PRFs) where the adversary has access to the key that allows them to evaluate the
hash function. Hash functions have found a variety of uses in cryptography, and
in this lecture we survey some of their other applications. In some of these cases,
we only need the relatively mild and well-defined property of collision resistance
while in others we only know how to analyze security under the stronger (and
not precisely well defined) random oracle heuristic.

Keys from passwords

We have seen great cryptographic tools, including PRFs, MACs, and CCA secure
encryptions, that Alice and Bob can use when they share a cryptographic key of
128 bits or so. But unfortunately, many of the current users of cryptography
are humans which, generally speaking, have extremely faulty memory capacity
for storing large numbers. There are 628 ≈ 248 ways to select a password of 8
upper and lower case letters + numbers, but some letter/numbers combinations
end up being chosen much more frequently than others. Due to several large
scale hacks, very large databases of passwords have been made public, and one
estimate is that the most frequent 10, 000 ≈ 214 passwords account for more
than 90% of the passwords chosen. If we choose a password at random from
some set D then the entropy of the password is simply log |D|.
Estimating the entropy of real life passwords is rather difficult. For example,
suppose that I use the winning Massachussets Mega-Lottery numbers as my
password. A priory, my password consists of 5 numbers between 1 till 75 and so
its entropy is log(755) ≈ 31. However, if an attacker knew that I did this, the
entropy might be something like log(520) ≈ 9 (since there were only 520 such
numbers selected in the last 10 years). Moreover, if they knew exactly what
draw I based my password on, then they would it exactly and hence the entropy
(from their point of view) would be zero. This is worthwhile to emphasize:

The entropy of a secret is always measured with respect to the at-
tacker’s point of view

1

https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/

The exact security of passwords is of course a matter of intense practical interest,
but we will simply model the password as being chosen at random from some
set D ⊆ {0, 1}n (which is sometimes called the “dictionary”). The set D is
known to the attacker, but she has no information on the particular choice of
the password.

Much of the challenge for using passwords securely relies on the distinction be-
tween offline and online attacks. If each guess for a password requires interacting
online with a server, as is the case when typing a PIN number in the ATM, then
even a weak password (such as a 4 digit PIN that at best provides 13 bits of
entropy) can yield meaningful security guarantees, as typically an alarm would
be raised after five or so failed attempts.
However, if the adversary has the ability to check offline whether a password is
correct then the number of guesses they can try can be as high as the number of
computing cycles at their disposal, which can easily run into the billions and
so break passwords of 30 or more bits of entropy. (This is an issue we’ll return
to after we learn about public key cryptography when we’ll talk about password
authenticated key exchange.)

Consider a password manager application. In such an application, a user typically
chooses a master password pmaster which she can then use to access all her other
passwords p1, . . . , pt. To enable her to do so without requiring online access to
a server, the master password pmaster is used to encrypt the other passwords.
However to do that, we need to derive a key kmaster from the password. A classical
approach is to simply use a cryptographic hash function H : {0, 1}∗ → {0, 1}n,
and let kmaster = H(pmaster). If think of H as a random oracle and pmaster

as chosen randomly from D, then as long as an attacker makes � |D| queries
to the oracle, they are unlikely to make the query pmaster and hence the value
kmaster will be completely random from their point of view.

However, since |D| is not too large, it might not be so hard to perform such |D|
queries. For this reason, people typically use a deliberately slow hash function as
a key derivation function. The rationale is that the honest user only needs to
evaluate H once, and so could afford for it to take a while, while the adversary
would need to evaluate it |D| times. For example, if |D| is about 100, 000 and
the honest user is willing to spend 1 cent of computation resources every time
they need to derive kmaster from pmaster, then we could set H(·) so that it costs
1 cent to evaluate it and hence on average it will cost the adversary $1, 000 to
recover it.

There are several approaches for trying to make H deliberately “slow” or “costly”
to evaluate but the most popular and simplest one is to simply let H be obtained
by iterating many times a basic hash function such as SHA-256. That is,
H(x) = h(h(h(· · ·h(x)))) where h is some standard (“fast”) cryptographic hash
function and the number of iterations is tailored to be the largest one that the
honest users can tolerate.1

1Since CPU speeds can vary quite radically and attackers might even use special-purpose

2

In fact, typically we will set kmaster = H(pmaster‖r) where r is a long random
but public string known as a “salt”. Including such a “salt” can be important
to foiling an adversary’s attempts to amortize the computation costs, see the
exercises.

Figure 1: To obtain a key from a password we will typically use a “slow” hash
function to map the password and a unique-to-user public “salt” value to a
cryptographic key. Even with such a procedure, the resulting key cannot be
consider as secure and unpredictable as a key that was chosen truly at random,
especially if we are in a setting where an adversary can launch an offline attack
to guess all possibilities.

Even when we don’t use one password to encrypt others, it is generally considered
the best practice to never store a password in the clear but always in this “slow
hashed and salted” form, so if the passwords file falls to the hands of an adversary
it will be expensive to recover them.

Merkle trees and verifying storage.

Suppose that you outsource to the cloud storing your huge data file x ∈ {0, 1}N .
You now need the ith bit of that file and ask the cloud for xi. How can you tell
that you actually received the correct bit?

Ralph Merkle came up in 1979 with a clever solution for this which is known
as “Merkle hash trees”. The idea is the following: suppose we have a collision-
resistant hash function h : {0, 1}2n → {0, 1}n, and think of the string x as

hardware to evaluate iterated hash functions quickly, Abadi, Burrows, Manasse, and Wobber
suggested in 2003 to use memory bound functions as an alternative approach, where these are
functions H(·) designed so that evaluating them will consume at least T bits of memory for
some large T . See also the followup paper of Dwork, Goldberg and Naor. This approach has
also been used in some practical key derivation functions such as scrypt and Argon2.

3

https://password-hashing.net/argon2-specs.pdf

composed of t blocks of size n. We then hash every pair of consecutive blocks
to transform x into a string x1 of t/2 blocks, and continue in this way for log t
steps until we get a single block y ∈ {0, 1}n. (Assume here t is a power of two
for simplicity, though it doesn’t make much difference.)

Figure 2: In the Merkle Tree construction we map a long string x into a block
y ∈ {0, 1}n that is a “digest” of the long string x. As in a collision resistant
hash we can imagine that this map is “one to one” in the sense that it won’t be
possible to find x′ 6= x with the same digest. Moreover, we can efficiently certify
that a certain bit of x is equal to some value without sending out all of x but
rather the log t blocks that are on the path between i to the root together with
their “siblings” used in the hash function, for a total of at most 2 log t blocks.

Alice who sends x to the cloud Bob will keep the short block y. Whenever Alice
queries the value i she will ask for a certificate that xi is indeed the right value.
This certificate will consists of the block that contains i, as well as all of the
2 log t blocks that were used in the hash from this block to the root. The security
of this scheme follows from the following simple theorem:

Theorem: Suppose that π is a valid certificate that xi = b, then either this
statement is true, or one can efficiently extract from π and x two inputs z 6= z′

in {0, 1}2n such that h(z) = h(z′).

Proof: The certificate π consists of a sequence of log t pairs of size-n blocks
that are obtained by following the path on the tree from the ith coordinate of
x to the final root y. The last pair of blocks is the a preimage of y under h,
while each pair on this list is a preimage of one of the blocks in the next pair. If

4

xi 6= b, then the first pair of blocks cannot be identical to the pair of blocks of
x that contains the ith coordinate. However, since we know the final root y is
identical, if we compare the corresponding path in x to π, we will see that at
some point there must be an input z in the path from x and a distict input z′ in
π that hash to the same output. QED

Proofs of Retrievability

The above provides a way to ensure Alice that the value retrieved from a cloud
storage is correct, but how can Alice be sure that the cloud server still stores
the values that she did not ask about?

A priori, you might think that she obviously can’t. If Bob is lazy, or short on
storage, he could decide to store only some small fraction of x that he thinks
Alice is more likely to query for. As long as Bob wasn’t unlucky and Alice
doesn’t ask these queries, then it seems Bob could get away with this. In a proof
of retrievability, first proposed by Juels and Kalisky in 2007, Alice would be able
to get convinced that Bob does in fact store her data.

First, note that Alice can guarantee that Bob stores at least 99% of her data,
by periodically asking him to provide answers (with proofs!) of the value of x
at 100 or so random locations. Now, we used some redundancy to store x such
as the RAID format, where it is composed of some small number c parts and
we can recover any bit of the original data as long as at most one of the parts
were lost, then we might hope that even if 1% of x was in fact lost by Bob, we
could still recover the whole string. This is not a fool-proof guarantee since it
could possibly be that the data lost by Bob was not confined to a single part. To
handle this case one needs to consider generalizations of RAID known as “local
reconstruction codes” or “locally decodable codes”. The paper by Dodis, Vadhan
and Wichs is a good source for this; see also these slides by Seny Kamara for a
more recent overview of the theory and implementations.

Entropy extraction

As we’ve seen time and again, randomness is crucial to cryptography. But how
do we get these random bits we need? If we only have a small number n of
random bits (e.g., n = 128 or so) then we can expand them to as large a number
as we want using a pseudorandom generator, but where do we get those initial n
bits from?

The approach used in practice is known as “harvesting entropy”. The idea is
that we make great many measurements x1, . . . , xm of events that are considered
“unpredictable” to some extent, including mouse movements, hard-disk and
network latency, sources of noise etc. . . and accumulate them in an entropy
“pool” which would simply be some memory array. When we estimate that we

5

http://www.people.seas.harvard.edu/~salil/research/PoR-tcc09.pdf
http://www.people.seas.harvard.edu/~salil/research/PoR-tcc09.pdf
http://research.microsoft.com/en-us/um/people/senyk/slides/pos-cai.pdf

have accumulated more than 128 bits of randomness, then we hash this array
into a 128 bit string which we’ll use as a seed for a pseudorandom generator.2
Because entropy needs to be measured from the point of view of the attacker,
this “entropy estimation” routine is a bit of a “black art” and there isn’t a very
principled way to perform it. In practice people try to be very conservative (e.g.,
assume that there is only one bit of entropy for 64 bits of measurements or so)
and hope for the best, which often works but sometimes also spectacularly fails,
especially in embedded systems that do not have access to many of these sources.

Figure 3: To obtain pseudorandom bits for cryptographic applications we hash
down measurements which contain some entropy in them to a shorter string that
is hopefully truly uniformly random or at least statistically close to it, and then
expand this to get as many pseudorandom bits as we need using a pseudorandom
generator.

How do hash functions figure into this? The idea is that if an input x has n
bits of entropy then h(x) would still have the same bits of entropy, as long as
its output is larger than n. In practice people use the notion of “entropy” in a
rather loose sense, but we will try to be more precise below.

2The reason that people use entropy “pools” rather than simply adding the entropy to the
generator’s state as it comes along is that the latter alternative might be insecure. Suppose
that initial state of the generator was known to the adversary and now the entropy is “trickling
in” one bit at a time while we continuously use the generator to produce outputs that can be
observed by the adversary. Every time a new bit of entropy is added, the adversary now has
uncertainty between two potential states of the generator, but once an output is produced
this eliminates this uncertainty. In contrast, if we wait until we accumulate, say, 128 bits of
entropy, then now the adversary will have 2128 possible state options to consider, and it could
be computationally infeasible to cull them using further observation.

6

https://factorable.net/paper.html

The entropy of a distribution D is meant to capture the amount of “uncertainty”
you have over the distribution. The canonical example is when D is the uniform
distribution over {0, 1}n, in which case it has n bits of entropy. If you learn
a single bit of D then you reduce the entropy by one bit. For example, if you
learn that the 17th bit is equal to 0, then the new conditional distribution D′
is the uniform distribution over all strings in x ∈ {0, 1}n such that x17 = 0
and has n− 1 bits of entropy. Entropy is invariant under permutations of the
sample space, and only depends on the vector of probabilities, and thus for every
set S all notions of entropy will give log2 |S| bits of entropy for the uniform
distribution over S. A distribution that is uniform over some set S is known as
a flat distribution.

Where different notions of entropy begin to differ is when the distributions are
not flat. The Shannon entropy follows the principle that “original uncertainty =
knowledge learned + new uncertainty”. That is, it obeys the chain rule which
is that if a random variable (X,Y) has n bits of entropy, and X has k bits of
entropy, then after learning X on average Y will have n−k bits of entropy. That
is,

HShannon(X) +HShannon(Y |X) = HShannon(X,Y)

Where the entropy of a conditional distribution Y |X is simply Ex←R XHShannon(Y |X =
x) where Y |X = x is the distribution on Y obtained by conditioning on the
event that X = x.

If (p1, . . . , pm) is a vector of probabilities summing up to 1 and let us assume
they are rounded so that for every i, pi = ki/2n for some integer ki. We can then
split the set {0, 1}n into m disjoint sets S1, . . . , Sm where |Si| = ki, and consider
the probability distribution (X,Y) where Y is uniform over {0, 1}n, and X is
equal to i whenever Y ∈ Si. Therefore, by the principles above we know that
HShannon(X,Y) = n (since X is completely determined Y and hence (X,Y)
is uniform over a set of 2n elements), and H(Y |X) = log ki. Thus the chain
rule tells us that HShannon(X) = n−E[Y |X] = n−

∑m
i=1 piki =

∑m
i=1 pi log(pi)

since pi = ki/2n and hence log(pi) = log(ki)− n.

The Shannon entropy has many attractive properties, but it turns out that
for cryptographic applications, the notion of min entropy is more appropri-
ate. For a distribution X the min-entropy is simply defined as H∞(X) =
maxx log(1/Pr[X = x]).3 Note that if X is flat then Hinfty(X) = HShannon(X)
and that Hinfty(X) ≤ HShannon(X) for all X. We can now formally define the
notion of an extractor:

Definition: A function h : {0, 1}`+n → {0, 1}n is an extractor if for every
3The notation H∞(·) for the min entropy comes from the fact that one can define a family

of entropy like functions, containing a function for every non-negative number p based on
the p-norm of the probability distribution. That is, the Rényi entropy of order p is defined
as Hp(X) = (1 − p)−1 log(

∑
x

Pr[X = x]p). The min entropy can be thought of as the limit
of Hp when p tends to infinity while the Shannon entropy is the limit as p tends to 1. The
entropy H2(·) is related to the collision probability of X and is often used as well.

7

https://en.wikipedia.org/wiki/R%C3%A9nyi_entropy

distribution X over {0, 1}` with min entropy at least 2n, if we pick s to be a
random “salt”, the distribution h(X) is computationally indistinguishable from
the uniform distribution.4

The idea is that we apply the hash function to our measurements in {0, 1}` then
if those measurements had at least k bits of entropy (with some extra “security
margin”) then the output h(X) will be as good as random. Since the “salt”
value s is not secret, it can be chosen once at random and hardwired into the
description of the function. (Indeed in practice people often do not explicitly
use such a “salt”, but the hash function description contain some parameters IV
that play a similar role.)

Theorem: Suppose that h : {0, 1}`+n → {0, 1}n is chosen at random, and
` < n100. Then with high probability h is an extractor.

Proof: Let h be chosen as above, and let X be some distribution over {0, 1}`

with maxx{Pr[X = x]} ≤ 2−2n. Now, for every s ∈ {0, 1}n let hs be the function
that maps x ∈ {0, 1}` to h(s‖x), and let Ys = hs(X). We want to prove that Ys

is pseudorandom. We will use the following claim:

Claim: Let Col(Ys) be the probability that two independent sample
from Ys are identical. Then with probability at least 0.99, Col(Ys) <
2−n + 100 · 2−2n.

Proof of claim: EsCol(Ys) =
∑

s 2−n
∑

x,x′ Pr[X = x] Pr[X =
x′]

∑
y∈{0,1}n Pr[h(s, x) = y] Pr[h(s, x′) = y]. Let’s separate this to

the contribution when x = x′ and when they differ. The contribu-
tion from the first term is

∑
s 2−n

∑
x Pr[X = x]2 which is simply

Col(X) =
∑

Pr[X = x]2 ≤ 2−2n since Pr[X = x] ≤ 2−2n. In the
second term, the events that h(s, x) = y and h(s, x′) = y are inde-
pendent, and hence the contribution here is at most

∑
x,x′ Pr[X =

x] Pr[X = x′]2−n. The claim follows from Markov.

Now suppose that T is some efficiently computable function from {0, 1}n to {0, 1},
then by Cauchy-Schwarz |E[T (Un)]−E[T (Ys)]| = |

∑
y∈{0,1}n T (y)[2−n−Pr[Ys =

y]]| ≤
√∑

y T (y)2 ·
∑

y(2−n − Pr[Ys = y])2 but opening up
∑

y(2−n − Pr[YS =
y])2 we get 2−n−2 ·2−n

∑
y Pr[Ys = y]+

∑
y Pr[Ys = y]2 or Col(Ys)−2−n which

is at most the negligible quantity 100 · 2−2n.

Note: This proof actually proves a much stronger statement. First, note that
we did not at all use the fact that T is efficiently computable and hence the
distribution hs(X) will not be merely pseudorandom but actually _statistically
indistinguishable__ from truly random distribution. Second, we didn’t use the

4The pseudorandomness literature studies the notion of extractors much more generally and
consider all possible variations for parameters such as the entropy requirement, the salt (more
commonly known as seed) size, the distance from uniformity, and more. The type of notion
we consider here is known in that literature as a “strong seeded extractor”. See Vadhan’s
monograph for an in-depth treatment of this topic.

8

http://people.seas.harvard.edu/~salil/pseudorandomness/
http://people.seas.harvard.edu/~salil/pseudorandomness/

fact that h is completely random but rather what we needed was merely pairwise
independence: that for every x 6= x′ and y, Prs[hs(x) = hs(x′) = y] = 2−2n.
There are efficient constructions of functions h(·) with this property, though in
practice people still often use cryptographic hash function for this purpose.

Forward secrecy: A cryptographic tool such as encryption is clearly
insecure if the adversary learns the private key, and similarly the
output of a pseudorandom generator is insecure if the adversary learns
the seed. So, it might seem as if it’s “game over” once this happens.
However, there is still some hope. For example, if the adversary
learns it at time t but didn’t know it before then, then one could
hope that she does not learn the information that was exchanged
up to time t − 1. This property is known as “forward secrecy”. It
had recently gained interest as means to protect against powerful
“attackers” such as the NSA that may record the communication
transcripts in the hope of deciphering them in some future after it had
learned the secret key. In the context of pseudorandom generators,
one could hope for both forward and backwards secrecy. Forward
secrecy means that the state of the generator is updated at every
point in time in a way that learning the state at time t does not help
in recovering past state, and “backwards secrecy” means that we can
recover from the adversary knowing our internal state by updating
the generator with fresh entropy. See this paper of me and Halevi
for some discussions of this issue, as well as this later work by Dodis
et al.

9

https://eprint.iacr.org/2005/029
https://eprint.iacr.org/2013/338
https://eprint.iacr.org/2013/338

	Keys from passwords
	Merkle trees and verifying storage.
	Proofs of Retrievability
	Entropy extraction

