
CS 127: Cryptography / Boaz Barak

Length extension on Steroids - Pseudorandom
functions.

Reading:

In the last lecture we saw the notion of pseudorandom generators, and introduced
the PRG conjecture that there exists a pseudorandom generator mapping n
bits to n+ 1 bits. We have seen the length extension theorem that we given such
a pseudorandom generator, we can create a generator mapping n bits to m bits
for an arbitrarily large polynomial m(n). But can we extend it even further?
Say, to 2n bits? Does this question even make sense? And why would we want
to do that? This is the topic of this lecture.

At a first look, the notion of extending the output length of a pseudorandom
generator to 2n bits seems nonsensical. After all we want our generator to be
efficient and just writing down the output will take exponential time. However,
there is a way around this conundrum. While we can’t efficiently write down
the full output, we can require that it would be possible, given an index i ∈
{1, . . . , 2n}, to compute the ith bit of the output in polynomial time. That is,
we require that the function i 7→ G(S)i is efficiently computable and (by security
of the pseudorandom generator) indistinguishable from a function that maps
each index i to an independent random bit in {0, 1}. This is the notion of a
pseudorandom function generator which is a bit subtle to define and construct,
but turns out to have great many applications in cryptography.

Definition (Pseudorandom Function Generator): An efficiently com-
putable function F taking two inputs s ∈ {0, 1}n and i ∈ {1, . . . , 2n} and
outputting a single bit F (s, i) is a pseudorandom function (PRF) generator if
for every polynomial time adversary A outputting a single bit and polynomial
p(n), if n is large enough then:∣∣∣Es∈{0,1}n [AF (s,·)(1n)]− EH←R [2n]→{0,1}[AH(1n)]

∣∣∣ < 1/p(n) .

Some notes on notation are in order. The input 1n is simply a string of n ones,
and it is a typical cryptography convention to assume that such an input is
always given to the adversary. This is simply because by “polynomial time” we
really mean polynomial in n (which is our key size or security parameter). The
notation AF (s,·) means that A has black box (also known as oracle) access to the
function that maps i to F (s, i). That is, A can choose an index i, query the box
and get F (s, i), then choose a new index i′, query the box to get F (s, i′), etc..
etc.. for a polynomial number of queries. The notation H ←R {0, 1}n → {0, 1}
means that H is simply a completely random function that maps every index i

1



to an independent and random different bit. That means that the notation AH

in the equation above means that A has access to a completely random black
box that returns a random bit for any new query made. Finally one last note:
below we will identify the set [2n] = {1, . . . , 2n} with the set {0, 1}n (there is a
one to one mapping between those sets using the binary represnetation), and so
we will treat i interchangebly as a number in [2n] or a string in {0, 1}n.

Informally, if F is a pseudorandom function generator, then if we choose a
random string s, and consider the function fs defined by fs(i) = F (s, i) then no
efficient algorithm can distinguish between black box access to fs(·) and black
box access to a completely random function. Thus instead of talking about a
pseudorandom function generator we will sometimes refer to a pseudorandom
function collection {fs} where by that we mean that the map F (s, i) = fs(i) is
a pseudorandom function generator.

Figure 1: In a pseudorandom function, an adversay cannot tell whether they
are given a black box that computes the function i 7→ F (s, i) for some secret
s that was chosen at random and fixed, or whether the black box computes a
completely random function that tosses a fresh random coin whenever it’s given
a new input i

We will later see the following theorem:

Theorem (PRF Theorem, Goldwasser, Goldreich and Micali): Assum-
ing the PRG conjecture, there exists a secure pseudorandom function generator.

But before we see the proof of the PRF Theorem, let us see why pseudorandom
functions could be useful.

One time passwords (e.g., Google Authenticator, RSA ID,
etc..)

Until now we have talked about the task of encryption, or protecting the secrecy of
messages. But the task of authentication, or protecting the integrity of messages
is no less important. For example, consider the case that you receive a software
update for your PC, phone, car, pacemaker, etc.. over an open connection such

2



as an unencrypted Wi-Fi. Then the contents of that update are not secret, but
it is of crucial importance that no malicious attacker had modified the code and
that it was unchanged from the message sent out by the company. Similarly,
when you log into your bank, you might be much more concerned about the
possiblity of someone impersonating you and cleaning out your account than
you are about the secrecy of your information.

Let’s start with a very simple scenario which I’ll call the login problem. Alice
and Bob share a key as before, but now Alice wants to simply prove her identity
to Bob. What makes it challenging is that this time they need to tackle not the
passive eavesdropping Eve but the active adversary Mallory who completely
controls the communication channel between them and can modify (or mall)
any message that they send out. Specifically for the identity proving case,
we think of the following scenario. Each instance of such an identification
protocol consists of some interaction between Alice and Bob that ends with
Bob deciding whether to accept it as authentic or reject as an impersonation
attempt. Mallory’s goal is to fool Bob into accepting her as Alice.

The most basic way to try to solve the login problem is simply using a password.
That is, if we assume that Alice and Bob can share a key, we can treat this key
as some secret password p that was selected at random from {0, 1}n (and hence
can only be guessed with probability 2−n). Why doesn’t Alice simply send p to
Bob to prove to him her identity? A moment’s thought shows that this would
be a very bad idea. Since Mallory is controlling the communication line, she
would learn p after the first identification attempt and then could impersonate
Alice in future interactions. However, we seem to have just the tool to protect
the secrecy of p— encryption. Suppose that Alice and Bob share a secret key k
and an additional secret password p. Wouldn’t a simple way to solve the login
problem be for Alice to send to Bob an encryption of the password p? After
all, the security of the encryption should guarantee that Mallory can’t learn p,
right?

This would be a good time to stop reading and try to think for yourself whether
using a secure encryption to encrypt p would guarantee security for the login
problem. (No really, stop and think about it.)

The problem is that Mallory does not have to learn the password p in order to
impersonate Alice. For example, she can simply record the message Alice c1 sends
to Bob in the first session and then replay it to Bob in the next session. Since
the message is a valid encryption of p, then Bob would accept it from Mallory!
(This is known as a replay attack and is a common concern one needs to protect
against in crypgoraphic protocols.) One can try to put in countermeasures to
replay this particular attack, but its existence demonstrates that secrecy of the
password does not guarantee security of the login protocol.

How do pseudorandom functions help in the login problem? The idea is that they
create what’s known as a one time password. Alice and Bob will share an index
s ∈ {0, 1}n for the pseudorandom function generator {fs}. When Alice wants to

3



prove to Bob her identity, Bob will choose a random i←R {0, 1}n, and send i
to Alice, and then Alice will send fs(i), fs(i+ 1), . . . , fs(i+ `− 1) to Bob where
` is some parameter (you can think of ` = n for simplicity). Bob will check that
indeed y = fS(i) and if so accept the session as authentic.

The formal protocol is as follows:

Protocol PRF-Login:

• Shared input: s ∈ {0, 1}n. Alice and Bob treat it as a seed for a pseudo-
random function generator {fs}.

• In every session Alice and Bob do the following:

1. Bob chooses a random i←R [2n] and sends i to Alice.
2. Alice sends y1, . . . , y` to Bob where yj = fs(i+ j − 1).
3. Bob checks that for every j ∈ {1, . . . , `}, yj = fs(i+ j−1) and if so accepts

the session; otherwise he rejects it.

As we will see it’s not really crucial that the input i (which is known in crypto
parlance as a nonce) is random. What is crucial is that it never repeats itself, to
foil a replay attack. For this reason in many applications Alice and Bob compute
i as a function of the current time (for example, the index of the current minute
based on some agreed-upon starting point), and hence we can make it into a one
message protocol. Also the parameter ` is sometimes chosen to be deliberately
short so that it will be easy for people to type the values y1, . . . , y` in.

Figure 2: The Google Authenticator app is one popular example of a one-time
password scheme using pseudorandom functions. Another example is RSA’s
SecurID token.

Why is this secure? The key to understanding schemes using pseudorandom
functions is to imagine what would happen if instead of a pseudo random
function, fs would be an actual random function. In a truly random function,
every one of the values fs(1), . . . , fs(2n) is chosen independently and uniformly
at random from {0, 1}. One useful way to imagine this is using the concept of
“lazy evaluation”. We can think of fS as determined by tossing 2n different coins
for the values f(1), . . . , f(2n). Now we can think of the case where we don’t
actually toss the ith coin until we need it. Now the crucial point is that if we
have queried the function in T � 2n places, and now Bob chooses a random

4



i ∈ [2n] then it is extremely unlikely that any one of the set {i, i+1, . . . , i+`−1}
will be one of those locations that we previously queried. Thus Mallory has no
information on the value of the function, and would be able to predict it in all
these locations with probability at most 2−`.

Please make sure you understand this informal reasoning, since we will now
translate this into a formal theorem and proof.

Theorem: Suppose that {fs} is a secure pseudorandom function generator and
Alice and Bob interact using it some polynomial number T of sessions (over
a channel controlled by Mallory), and then Mallory interacts with Bob when
Bob follows the protocols instructions and Mallory uses an arbitrary efficient
computation. Then, the probability that Bob accepts the interaction after this
interaction is at most 2−` + µ(n) where µ(·) is some negligible function.

Proof: This proof, as so many others in this proof, uses an argument via
contradiction. We assume, towards the sake of contradiction, that there exists an
adversary M (for Mallory) that can break the identification scheme PRF-Login
with probability 2−` + ε after T interactions and construct an attacker A that
can distinguish access to {fs} from access to a random function using poly(T )
time and with bias at least ε/2.

How do we consrtruct this adversary A? The idea is as follows. First, we
prove that if we ran the protocol PRF-Login using an actual random function,
then M would not be able to succeed in impresonating with probability better
than 2−` + negligible. Therefore, if M does do better, then we can use that
to distinguish fs from a random function. The adversary A gets some black
box F (·) and will use it while simulating internally all the parties— Alice, Bob
and Mallorty (using M) in the T + 1 interactions of the PRF-Login protocol.
Whenever any of the parties needs to evalueate fs(i), A will forward i to its
black box F (·) and return the value F (i). It will then output 1 if an only if
M succeeds in impersonation in this internal simulation. The argument above
showed that if F (·) is a truly random function then the probability A outputs 1
is at most 2−` + negligible (and so in particular less than 2−` + ε/2 while under
our assumptions, if F (·) is the function i 7→ fs(i) for some fixed and random s,
then this probability is at least 2−` + ε. Thus A will distinguish between the
two cases with bias at least ε/2. We now turn to the formal proof:

Claim 1: Let PRF-Login* be the hypothetical variant of the protocol PRF-Login
where Alice and Bob share a completely random function H : [2n] → {0, 1}.
Then, no matter what Mallory does, the probability she can impersonate Alice
after observing T interactions is at most 2−` + (8`T )/2n.

(If PRF-Login* is easier to prove secure than PRF-Login, you might wonder why
we bother with PRF-Login in the first place and not simply use PRF-Login*.
The reason is that specifying a random function H requires specifying 2n bits,
and so that would be a huge shared key. So PRF-Login* is not a protocol we
can actually run but rather a hypothetical “mental experiment” that helps us in
arguing about the security of PRF-Login.)

5



Proof of Claim 1: Let i1, . . . , i2T be the nonces chosen by Bob and recieved
by Alice in the first T iterations. That is, i1 is the nonce chosen by Bob in the
first iteration while i2 is the nonce that Alice received in the first iteration (if
Mallory doesn’t modify it then i1 = i2), similarly i3 is the nonce chosen by Bob
in the second iteration while i4 is the nonce recieved by Alice and so on and
so forth. Let i be the nonce chosen in the T + 1st iteration in which Mallory
tries to impersonate Alice. We claim that the probability that there exists some
j ∈ {1, . . . , 2T} such that |i− ij | < 2` is at most (8`T/2n. Indeed, let S be the
union of all the intervals of the form {ij − 2`+ 1, . . . , ij + 2`− 1} for 1 ≤ j ≤ 2T .
Since it’s a union of 2T intervals each of length less than 4`, S contains at most
8T` elements, but so the probability that i ∈ S is |S|/2n ≤ (8T`)/2n. Now, if
there does not exists a j such that |i− ij | < 2` then it means in particular that
all the queries to H(·) made by either Alice or Bob during the first T iterations
are disjoint from the interval {i, i+ 1, . . . , i+ `− 1}. Since H(·) is a completely
random function, the values H(i), . . . ,H(i + ` − 1) are chosen uniformly and
independently from all the rest of the values of this function. Since Mallory’s
message y to Bob in the T + 1st iteration depends only on what she observed in
the past, the values H(i), . . . ,H(i+ `− 1) are independent from y, and hence
under this condition that there is no overlap between this interval and prior
queries, the probability that they equal y is 2−`. QED (Claim 1).

The proof of Claim 1 is not hard, but it is somewhat subtle, and it’s good to go
over it again and make sure you are sure you understand it.

Now that we have Claim 1, the proof of the theorem follows as outlined above. We
build an adversary A to the pseudorandom function generator from M by having
A simulate “inside its belly” all the parties Alice, Bob and Mallory and output 1
if Mallory succeeds in impersonating. Since we assumed ε is non-negligible and
T is polynomial, we can assume that (8`T )/2n < ε/2 and hence by Claim 1, if
the black box is a random function then we are in the PRF-Login* setting and
Mallory’s success will be at most 2−` + ε/2 while if the black box is fs(·) then we
get exactly the same setting as PRF-Login and hence under our assumption the
success will be at least 2−` + ε. We conclude that the difference in probability of
A outputting one between the random and pseudorandom case is at least ε/2
thus contradicting the security of the pseudorandom function generator. QED

A useful observation: In the course of constructing this one-time-
password scheme from a PRF, we have actually proven a general
statement that is useful on its own: that we can transform standard
PRF which is a collection {fs} of functions mapping {0, 1}n to {0, 1},
into a PRF where the functions have a longer output ` (see the
problem set for a formal statement of this result) Thus from now on
whenver we are given a PRF, we will allow ourselves to assume that
it has any output size that is convenient for us.

6



Message Authentication Codes

One time passwords are a tool allowing you to prove your identity to, say, your
email server. But even after you did so, how can the server trust that future
communication comes from you and not from some attacker that can interfere
with the communication channel between you and the server (so called “man
in the middle” attack). Similarly, one time passwords may allow a software
company to prove that their identity before they send you a software update,
but how do you know that an attacker does not change some bits of this software
update on route between their servers and your device?

This is where message authentication codes come into play- their role is to
authenticate not merely the identity of the parties but also their communication.
Once again we have Alice and Bob, and the adversary Mallory who can
actively modify messages (in contrast to the passive eavesdropper Eve). Similar
to the case o encryption, Alice has a message m she wants to send to Bob,
but now we are not concerned with with Mallory learning the contents of the
message, but they want to make sure that Bob gets precisely the message m sent
by Alice. Actually this is too much to ask for, since Mallory can always decide
to block all communication, but we can ask that either Bob gets precisely m or
he detects failure and accepts no message at all. Since we are in the private key
setting, we assume that Alice and Bob share a key k that is unknown to Mallory.

What kind of security would we want? We clearly want Mallory not to be able to
cause Bob to accept a message m′ 6= m. But, like in the encryption setting, we
want more than that. We would like Alice and Bob to be able to use the same
key for many messages. So, Mallory might observe the interactions of Alice and
Bob on messages m1, . . . ,mT before trying to cause Bob to accept a message
m′T +1 6= mT +1. In fact, to make our notion of security more robust, we will even
allow Mallory to choose the messages m1, . . . ,mT (this is known as a chosen
message or chosen plaintext attack). The resulting formal definition is below:

Definition (Message Authentication Codes (MAC)): Let (S, V ) (for sign
and verify) be a pair of efficiently computable algorithms where S takes as input
a key k and a message m, and produces a tag τ ∈ {0, 1}∗, while V takes as input
a key k, a message m, and a tag τ , and produces a bit b ∈ {0, 1}. We say that
(S, V ) is a Message Authentication Code (MAC) if:

• For every key k and message m, Vk(m,Sk(m)) = 1.

• For every polynomial-time adversary A and polynomial p(n), it is with less
than 1/p(n) probability over the choice of k ←R {0, 1}n that ASk(·)(1n) =
(m′, τ ′) such that m′ is not one of the messages A queries and Vk(m′, τ ′) =
1.1

1Clearly if the adversary outputs a pair (m, τ) that it did query from its oracle then that
pair will pass verification. This suggests the possiblity of a replay attack whereby Mallory
resends to Bob a message that Alice sent him in the past. As above, once can thwart this by
insisting the every message m begins with a fresh nonce or a value derived from the current

7



If Alice and Bob share the key k, then to send a message m to Bob, Alice will
simply send over the pair (m, τ) where τ = Sk(m). If Bob receives a message
(m′, τ ′), then he will accept m′ if and only if Vk(m′, τ ′) = 1. Now, Mallory
could observe t rounds of communication of the form (mi, Sk(mi)) for messages
m1, . . . ,mt of her choice, and now her goal is to try to create a new message m′
that was not sent by Alice, but for which she can forge a valid tag τ ′ that will
pass verification. Our notion of security guarantees that she’ll only be able to
do so with negligible probability.2

MACs from PRFs

We now show how pseudorandom function generators yield message authenti-
cation codes. In fact, the construction is so immediate, that much of the more
applied cryptographic literature does not distinguish between these two concepts,
and uses the name “Message Authentication Codes” to refer to both MAC’s and
PRF’s.

Theorem (MAC Theorem): Under the PRG Conjecture, there exists a secure
MAC.

Proof: Let F (·, ·) be a secure pseudorandom function generator with n/2 bits
output (as mentioned above, such PRF’s can be constructed from one bit output
PRF’s). We define Sk(m) = F (k,m) and Vk(m, τ) to output 1 iff Fk(m) = τ .
Suppose towards the sake of contradiction that there exists an adversary A that
queries Sk(·) poly(n) many times and outputs (m′, τ ′) that she did not ask for
and such that F (k,m′) = τ ′. Now, if we had black box access to a completely
random function H(·), then the value H(m′) would be completely random in
{0, 1}n/2 and independent of all prior queries. Hence the probability that this
value would equal τ ′ is at most 2−n/2. That means that such an adversary can
distinguish between an oracle to Fk(·) and an oracle to a random function H.
QED

Input length extension for MACs and PRFs

So far we required the message to be signed m to be no longer than the key k
(i.e., both n bits long). However, it is not hard to see that this requirement is not
really needed. If our message is longer, we can divide into blocks m1, . . . ,mt and
sign each message (i,mi) individually. The disadvantage here is that the size
of the tag (i.e., MAC output) will grow with the size of the message. However,

time.
2A priori you might ask if we should not also give Mallory an oracle to Vk(·) as well. After

all, in the course of those many interactions, Mallory could also send Bob many messages
(m′, τ ′) of her choice, and observe from his behaviour whether or not these passed verification.
It is a good exercise to show that adding such an oracle does not change the power of the
definition, though we note that this is decidedly not the case in the analogous question for
encryption.

8



even this is not really needed. Because the tag has length n/2 for length n
messages, we can sign the tags τ1, . . . , τt and only output those. The verifier can
repeat this computation to verify this. We can continue this way and so get tags
of O(n) for arbitrarily long messages. Hence in the future, whenever we need
to, we will assume that our PRFs and MACs can get inputs in {0, 1}∗ — i.e.,
arbitrarily length strings.

We note that this issue of length extension is actually quite a thorny and
important one in practice. The above approach is not the most efficient way
to achieve this, and there are several more practical variants in the literature
(see KL Sections ??, and Boneh-Shoup Sections ??). Also, one needs to be very
careful on the exact way one chops the message into blocks and pads it to an
integer multiple of the block size. Several attacks have been mounted on schemes
that performed this incorrectly.

9


	Length extension on Steroids - Pseudorandom functions.
	One time passwords (e.g., Google Authenticator, RSA ID, etc..)
	Message Authentication Codes
	MACs from PRFs
	Input length extension for MACs and PRFs


