
~ MathDefs ~

CS 127: Cryptography / Boaz Barak

Additional reading: Chapter 3 up to and including Section 3.3 in Katz Lindell
book.

Recall our cast of characters- Alice and Bob want to communicate securely over
a channel that is monitored by the nosy Eve. In the last lecture, we have seen the
definition of perfect secrecy that guarantees that Eve cannot learn anything about
their communication beyond what she already knew. However, this security
came at a price. For every bit of communication, Alice and Bob have to exchange
in advance a bit of a secret key. In fact, the proof of this result gives rise to the
following simple Python program that can break every encryption scheme that
uses, say, a 128 bit key, with a 129 bit message:

Gets ciphertext as input and two potential plaintexts
Positive return value means first is more likely,
negative means second is more likely,
0 means both have same likelihood.
#
We assume we have access to the function Decrypt(key,ciphertext)
def Distinguish(ciphertext,plaintext1,plaintext2):

bias = 0
key = [0,0,....,0] #128 0's
while(sum(key)<128):

p = Decrypt(key,ciphertext)
if p==plaintext1: bias++
if p==plaintext1: bias--
increment(key)

return bias

increment key when thought of as a number sorted from least significant
to most significant bit. Assume not all bits are 1.
def increment(key):

i = key.index(0);
for j in range(i-1): key[j]=0
key[i]=1

Now, generating, distributing, and protecting huge keys causes immense logistical
problems, which is why almost all encryption schemes used in practice do in
fact utilize short keys (e.g., 128 bits long) with messages that can much longer
(sometimes even terrabytes or more of data).

So, why can’t we use the above Python program to break all encryptions in the
Internet and win infamy and fortune? We can in fact, but we’ll have to wait a
really long time, since the loop in Distinguish will run 2128 times, which will
take much more than the lifetime of the universe to complete, even if we used
all the computers on the planet.

1

However, the fact that this particular program is not a feasible attack, does not
mean there does not exist a different attack. But this still suggests a tantalizing
possibility: if we consider a relaxed version of perfect secrecy that restricts Eve
to performing computations that can be done in this universe (e.g., less than 2256

steps should be safe not just for human but for all potential alien civilizations)
then can we bypass the impossibility result and allow the key to be much shorter
than the message?

This in fact does seem to be the case, but as we’ve seen, defining security is a
subtle task, and will take some care. As before, the way we avoid (at least some
of) the pitfalls of so many cryptosystems in history is that we insist on very
precisely defining what it means for a scheme to be secure.

Let us defer the discussion how one defines a function being computable in “less
than T operations” and just say that there is a way to formally do so. Given
the perfect secrecy definition we saw last time, a natural attempt for defining
computational security would be the following:

Security Definition (First Attempt): An encryption scheme (E,D) has t
bits of computational security if for every two distinct plaintexts {m0,m1} ⊆
{0, 1}` and every strategy of Eve using at most 2t computational steps, if we
choose at random b ∈ {0, 1} and a random key k ∈ {0, 1}n, then the probability
that Eve guesses mb after seeing Ek(mb) is at most 1/2.

This seems a natural definition, but is in fact impossible to achieve if the key
is shorter than the message. The reason is that if the message is even one bit
longer we can always have a very efficient procedure (one that runs in time 2t
for a very small t) that achieves success probability of about 1/2 + 2−n−1 by
guessing the key. (I.e., replace the loop in Distinguish by choosing the key at
random.)

However, such tiny advantage does not seem very useful, and hence our actual
definition will be the following:

Security Definition (Computational Security): An encryption scheme
(E,D) has t bits of computational security1 if for every two distinct plaintexts
{m0,m1} ⊆ {0, 1}` and every strategy of Eve using at most 2t computatoinal
steps, if we choose at random b ∈ {0, 1} and a random key k ∈ {0, 1}n, then the
probability that Eve guesses mb after seeing Ek(mb) is at most 1/2 + 2−t.

Having learned our lesson, let’s try to see that this strategy does give us the kind
of conditions we desired. In particular, let’s verify that this definition implies
the analogous condition to perfect secrecy.

1This is a slight simplification of the typical notion of “t bits of security”. In the more
standard definition we’d say that a scheme has t bits of security if for every t1 + t2 ≤ t, an
attacker running in 2t1 time can’t get success probability advantage more than 2−t2 . However
these two definitions only differ from one another by at most a factor of two. This may be
important for practical applications (where the difference between 64 and 32 bits of security
could be crucial) but won’t matter for our concerns.

2

Theorem: If (E,D) is has t bits of computational/ security then every subset
M ⊆ {0, 1}` and every strategy of Eve using at most 2t − (100`+ 100) computa-
tional steps, if we choose at random m ∈M and a random key k ∈ {0, 1}n, then
the probability that Eve guesses m after seeing Ek(mb) is at most 1/|M |+2−t+1.

Before proving this theorem note that it gives us a pretty strong guarantee. In
the exercises we will strengthen it even further showing that no matter what prior
information Eve had on the message before, she will never get any non-negligible
new information on it. One way to phrase it is that if your attacker used a
256-bit secure encryption to encrypt a message, then your chances of getting to
learn any additional information about it before the universe collapses are more
or less the same as the chances that a fairy will materialize and whisper it in
your ear.

Proof: The proof is rather similar to the equivalence of guessing one of two
messages vs. one of many messages for perfect secrecy. However, in the compu-
tational context we need to be careful keeping track of Eve’s running time. In
that proof we showed that if there exists:

• A subset M ⊆ {0, 1}` of messages

and

• An adversary Eve : {0, 1}o → {0, 1}` such that

Pr
m←RM,k←R{0,1}n

[Eve(Ek(m)) = m] > 1/|M |

Then there exist two messages m0,m1 and an adversary Eve′ : {0, 1}0 → {0, 1}`
such that Prb←R{0,1},k←R{0,1}n [Eve′(Ek(mb)) = mb] > 1/2.

To adapt this proof to the computational setting and complete the proof of the
current theorem we need to:

• Show that if the probability of Eve succeeding was 1
|M | + ε then the

probability of Eve′ succeeding is at least 1
2 + ε/2.

• Show that if Eve can be computed in T operations, then Eve′ can be
computed in T + 100`+ 100 operations.

The first point can be shown by simply doing the same proof more carefully,
keeping track how the advantage over 1

|M | for Eve translates into an advantage
over 1

2 for Eve′. The second point is obtained by looking at the definition of
Eve′ from that proof. On input c, Eve′ computed m = Eve(c) (which costs T
operations) and then checked if m = m0 (which costs, say, at most 5` operations),
and then output either 1 or a random bit (which is a constant, say at most 100
operations). QED

Note: The proof of this theorem is a model to how a great many of the results
in this course will look like. Generally we will have many theorems of the form:

3

“If there is a scheme S′ satisfying security definition X ′ then there
is a scheme S satisfying security definition X”

In this case X ′ was “having t bits of security” (hardness of distinguishing between
encryptions of two ciphertexts) and X was the more general notion of hardness
of getting a non-trivial advantage over guessing for an encryption of a random
m ∈M . Also here the scheme S was the same as S′, but generally that need not
always be the case. All of these proofs will have the same global structure— we
will assume towards a contradiction, that there is an efficient adversay strategy
Eve demonstrating that S violates X, and build from Eve a strategy Eve′

demonstrating that S′ violates X. This is such an important point that it
deserves repeating:

The way you show that if S′ is secure then S is secure is by giving a
transformation from an adversary that breaks S into an adversary
that breaks S′

For computational security, we will always want that Eve′ will be efficient if
Eve is, and that will usually be the case because Eve′ will simply use Eve as a
black box, which it will not invoke too many times, and addition will use some
polynomial time preprocessing and postprocessing. The more challenging parts
of such proofs are typically:

• Coming up with the strategy Eve′.

• Analyzing the probability of success and in particular showing that if Eve
had non-negligible advantage then so will Eve′.

Figure 1: We show that the security of S′ implies the security of S by transforming
an adversary Eve breaking S into an adversary Eve′ breaking S′

The asymptotic approach

For practical security, often every bit of security matters. We want our keys to
be as short as possible and our schemes to be as fast as possible while satisfying
a particular level of security. However, for understanding the principles behind
encryption, keeping track of those bits can be a distraction, and so just like

4

we do for algorithms, we will use asymptotic analysis (also known as big Oh
notation) to sweep many of those details under the carpet.

To a first approximation, there will be only two types of running times we will
encounter in this course:

• Polynomial running time of the form d · nc for some constants d, c > 0 (or
poly(n) = nO(1) for short) , which we will consider as efficient

• Exponential running time of the form 2d·nε for some constants d, ε > 0 (or
2nΩ(1) for short) which we will consider as infeasible.2

Another way to say it is that in this course, if a scheme has any security at all,
it will have at least n1/3 bits of security where n is the length of the key.

These are not all the theoretically possible running times. One can have interme-
diate functions such as nlogn though we will generally not encounter those. To
make things clean (and to correspond to standard terminology), we will say that
an algorithm A is efficient if it runs in time poly(n) when n is its input length
(which will always be the same, up to polynomial factors, as the key length).
If µ(n) is some probability that depends on the input/key length parameter n,
then we say that µ(n) is negligible if it’s smaller than every polynomial. That is,
for every c, d there is some N , such that if n > N then µ(n) < 1/(cn)d. Note
that for every non-constant polynomials p, q, µ(n) is negligible if and only if the
function µ′(n) = p(µ(q(n))) is negligible.

Note: The above definitions could be confusing if you haven’t encoun-
tered asymptotic analysis before. Reading the beginning of Chapter
3 (pages 43-51) in the KL book can be extremely useful. As a rule of
thumb, if every time you see the word “polynomial” you imagine the
function n10 and every time you see the word “negligible” you imagine
the function 2−sqrtn then you will get the right intuition. What you
need to remember is that negligible is much smaller than any inverse
polynomial, while polynomials are closed under multiplication, and
so we have the “equations” negligible×polynomial = negligible and
polynomial × polynomial = polynomial. As mentioned, in practice
people really want to get as close as possible to n bits of security
with an n bit key, but we would be happy as long as the security
grows with the key, so when we say a scheme is “secure” you can
think of it having

√
n bits of security (though any function growing

faster than logn would be fine as well).

From now on, we will require all of our encryption schemes to be efficient
which means that the encryption and decryption algorithms should run in
polynomial time. Security will mean that any efficient adversary can make at

2Some texts reserve the term exponential to running times of the form 2εn for some ε > 0
and call running time of , say, 2

√
n subexponential . However, we will generally not make this

distinction in this course.

5

most a negligible gain in the probability of guessing the message over its a priori
probability. That is, we make the following definition:

Security Definition (Computational Security): An encryption scheme
(E,D) is computationally secure if for every two distinct plaintexts {m0,m1} ⊆
{0, 1}` and every efficient strategy of Eve, if we choose at random b ∈ {0, 1} and
a random key k ∈ {0, 1}n, then the probability that Eve guesses mb after seeing
Ek(mb) is at most 1/2 + µ(n) for some negligible function µ(·).

Counting number of operations.

One more detail that we’ve so far ignored is what does it mean exactly for a
function to be computable using at most T operations. Fortunately, when we
don’t really care about the difference between T and, say, T 2, then essentially
every reasonable definition gives the same answer. Formally, we can use the
notions of Turing machines or Boolean circuits to define complexity. For con-
creteness, lets define that a function F : {0, 1}n → {0, 1}m has complexity there
exists a Boolean circuit (that uses the AND, OR and NOT gates) with at most
T gates that computes F . We will often also consider probabilistic functions
in which case we allow the circuit a RAND gate that outputs a single random
bits. For more on circuit complexity you can take a look at Chapter 6 of my
computational complexity textbook with Arora (see also draft on the web).

The fact that we only care about asymptotics means you don’t really need to
think of gates, etc.. when arguing in cryptography. However, it is comforting to
know that this notion has a precise mathematical formulation. See the appendix
below for a more precise formulation of this and some discussion.

Our first conjecture

We are now ready to make our first conjecture:

The Cipher Conjecture:3 There exists a computationally scure encryption
scheme (E,D) (where E,D are efficient) with a key of size n for messages of
size n+ 1.

A conjecture is a well defined mathematical statement which (1) we believe is
true but (2) don’t know yet how to prove. Proving the cipher conjecture will be
a great achievement and would in particular settle the P vs NP question, which
is arguably the fundamental question of computer science. That is, the following
is known to be a theorem (feel free to ignore it if you don’t know the definition

3As will be the case for other conjectures we talk about, the name “The Cipher Conjecture”
is not a standard name, but rather one we’ll use in this course. In the literature this conjecture
is mostly referred to as the conjecture of existence of one way functions, a notion we will learn
about later. These two conjectures a priori seem quite different but have been shown to be
equivalent.

6

http://theory.cs.princeton.edu/complexity/circuitschap.pdf

of P and NP, though if it piques your curiousity, you can find more about it by
reading the first two chapters of my book with Arora):

Theorem: If P = NP then there does not exist a computationally secure
encryption with efficient E and D and where the message is longer than the key.

Proof idea: If P = NP then whenever we have a loop that searches through
some domain to find some string that satisfies a particular property (like the
loop in the Distinguish subroutine above that searches over all keys) then this
loop can be sped up exponentially .

While it is very widely believed that P 6= NP , at the moment we do not know
how to prove this, and so have to settle for accepting the cipher conjecture as
essentially an axiom, though we will see later in this course that we can show it
follows from some seemingly weaker conjectures.

There are several reasons to believe the cipher conjecture. We now briefly
mention some of them:

• Intuition: If the cipher conjecture is false then it means that for every
possible cipher we can make the exponential time attack described above
become efficient. It seems “too good to be true” in a similar way that the
assumption that P=NP seems too good to be true.

• Concrete candidates: As we will see in the next lecture, there are several
concrete candidate ciphers using keys shorter than messages for which
despite tons of effort, no one knows how to break them. Some of them
are widely used and hence governments and other benign or not so benign
organizations have every reason to invest huge resources in trying to
break them. Despite that as far as we know (and we know a little more
after Snowden) there is no significant break known for the most popular
ciphers. Moreover, there are other ciphers that can be based on canonical
mathematical problems such as factoring large integers or decoding random
linear codes that are immensely interesting in their own right independently
of their cryptographic applications.

• Minimalism: Clearly if the cipher conjecture is false then we also don’t
have a secure encryption with a key, say, twice as long as the message.
But it turns out the cipher conjecture is in fact necessary for essentially
every cryptographic primitive, including not just private key and public
key encryptions but also digital signatures, hash functions, pseudorandom
generators, and more. That is, if the cipher conjecture is false then to a
large extent crytpgoraphy does not exist, and so we essentially have to
assume it if we want to do any kind of cryptography.

7

Why care about the cipher conjecture?

“Give me a place to stand, and I shall move the world” Archimedes,
circa 250 BC

Every perfectly secure encryption scheme is clearly also computationally secure,
and so if required a message of size n instead n+ 1 then the conjecture would
have been trivially satisfied by the one-time pad. However, having a message
longer than the key by just a single bit does not seem that impressive. Sure, if
we used such a scheme with 128-bit long keys, our communication will be smaller
by a factor of 128/129 (or a saving of about 0.8%) over the one-time pad, but
this doesn’t seem worth the risk of using an unproven conjecture. However, it
turns out that if we assume this rather weak condition, we can actually get a
computationally secure encryption scheme with a message of size p(n) for every
polynomial p(·). In essence, we can fix a single n-bit long key and communicate
securely as many bits as we want!

Moreover, this is just the beginning. There is a huge range of other useful
cryptographic tools that we can obtain from this seemingly innocent conjecture:
(We will see what all these names and some of these reductions mean later in
the course.)

Figure 2: Web of reductions between notions equivalent to ciphers with larger
than key messages

We will soon see the first of the many reductions we’ll learn in this course.
Together this “web of reductions” forms the scientific core of cryptography,
connecting many of the core concepts and enabling us to construct increasingly
sophisticated tools based on relatively simple “axioms” such as the cipher
conjecture.

8

Prelude: Computational Indistinguishability

The task of Eve in breaking an encryption scheme is to distinguish between an
encryption of m0 and an encryption of m1. It turns out to be useful to consider
this question of when two distributions are computationally indistinguishable
more broadly:

Definition (Computational Indistinguishability): Let X and Y be two
distributions over {0, 1}o. We say that X and Y are (T, ε)-computationally
indistinguishable, denoted by X ≈T,ε Y , if for every function Eve computable
with at most T operations,

|Pr[Eve(X) = 1]− Pr[Eve(Y) = 1]| ≤ ε .

We say that X and Y are simply computationally indistinguishable, denoted by
X ≈ Y , if they are (T, ε) indistinguishable for every polynomial T (o) and inverse
polynomial ε(o).4

Note: The expression Pr[Eve(X) = 1] can also be written as E[Eve(X)] (since
we can assume that whenever Eve(x) does not output 1 it outputs zero). This
notation will be useful for us sometimes.

We can use computational indistinguishability to phrase the definition of compu-
tational security more succinctly:

Theorem (C.I. phrasing of computational security): Let (E,D) be a
valid encryption scheme. Then (E,D) is computationally secure if and only if
for every two messages m0,m1 ∈ {0, 1}`,

{Ek(m0)} ≈ {Ek(m1)}

where each of these two distributions is obtained by sampling a random
k←R{0, 1}n.

The proof is left as an Exercise in Homework 1.

One intuition for computational indistinguishability that it is related to some
notion of distance. If two distributions are computationally indistinguishable,
then we can think of them as “very close” to one another, at least as far as
efficient observers are concerned. Intuitively, if X is close to Y and Y is close
to Z then X should be close to Z. Similarly if four distributions X,X ′, Y, Y ′
satisfy that X is close to Y and X ′ is close to Y ′, then you might expect that
the distribution (X,X ′) where we take two independent samples from X and X ′

4This definition implicitly assumes thatX and Y are actually parameterized by some number
n (that is polynomially related to o) so for every polynomial T (o) and inverse polynomial ε(o)
we can take n to be large enough so that X and Y will be (T, ε) indistinguishable. In all the
cases we will consider, the choice of the parameter n (which is usually the length of the key)
will be clear from the context.

9

respectively, is close to the distribution (Y, Y ′) where we take two independent
samples from Y and Y ′ respectively. We will now verify that these intuitions
are in fact correct:

Lemma (Triangle Inequality for Computational Indistinguishability):5
Suppose {X1} ≈T,ε {X2} ≈T,ε · · · ≈T,ε {Xm}. Then {X1} ≈T,(m−1)ε {Xm},
where o is the length of the Xi’s.

Proof: Suppose that there exists a T time Eve such that

|Pr[Eve(X1) = 1]− Pr[Eve(Xm) = 1]| > (m− 1)ε .

Write

Pr[Eve(X1) = 1]−Pr[Eve(Xm) = 1] =
m−1∑
i=1

(Pr[Eve(Xi) = 1]− Pr[Eve(Xi+1) = 1]) .

Thus,

m−1∑
i=1
|Pr[Eve(Xi) = 1]− Pr[Eve(Xi+1) = 1]| > (m− 1)ε

and hence in particular there must exists some i ∈ {1, . . . ,m− 1} such that

|Pr[Eve(Xi) = 1]− Pr[Eve(Xi+1) = 1]| > ε

contradicting the assumption that {Xi} ≈T,ε {Xi+1} for all i ∈ {1, . . . ,m− 1}.
QED

Lemma (Computational Indistinguishability is preserved under repe-
tition): Suppose that X1, . . . , X`, Y1, . . . , Y` are distributions over {0, 1}n such
that Xi ≈T,ε Yi. Then (X1, . . . , X`) ≈T−10`n,`ε (Y1, . . . , Y`).

Proof: For every i ∈ {0, . . . , `} we define Hi to be the distribution
(X1, . . . , Xi, Yi+1, . . . , Y`). Clearly H0 = (X1, . . . , X`) and H` = (Y1, . . . , Y`).
We will prove that for every i, Hi ≈T−10`n,ε Hi+1, and the proof will then follow
from the triangle inequality (can you see why?). Indeed, suppose towards the
sake of contradction that there was some i ∈ {0, . . . , `} and some T − 10`n-time
Eve′s : {0, 1}n` → {0, 1} such that

5Results of this form are known as “triangle inequalities” since they can be viewed as
generalizations of the statement that for every three points on the plane x, y, z, the distance
from x to z is not larger than the distance from x to y plus the distance from y to z. In other
words, the edge x, z of the triangle (x, y, z) is not longer than the sum of the lengths of the
other two edges x, y and y, z.

10

|E[Eve′(Hi)]− E[Eve(Hi+1)]| > ε .

In other words

∣∣EX1,...,Xi−1,Yi,...,Yell[Eve′(X1, . . . , Xi−1, Yi, . . . , Y`)]− EX1,...,Xi,Yi+1,...,Yell[Eve′(X1, . . . , Xi, Yi+1, . . . , Y`)]
∣∣ > ε .

By linearity of expectation we can write the difference of these two expectations
as

EX1,...,Xi−1,Xi,Yi,Yi+1,...,Yell [Eve′(X1, . . . , Xi−1, Yi, Yi+1, . . . , Y`)− Eve′(X1, . . . , Xi−1, Xi, Yi+1, . . . , Y`)]

. By the averging principle6 this means that there exist some values
x1, . . . , xi−1, yi+1, . . . , y` such that

|EXi,Yi [Eve′(x1, . . . , xi−1, Yi, yi+1, . . . , y`)− Eve′(x1, . . . , xi−1, Xi, yi+1, . . . , y`)]| > ε

Now Xi and Yi are simply independent draws from the distributions X and Y
respectively, and so if we define Eve(z) = Eve′(x1, . . . , xi−1, z, yi+1, . . . , y`) then
Eve runs in time at most the running time of Eve plus 2`n and it satisfies

|EXi [Eve(Xi)]− EYi [Eve(Yi)]| > ε

contradicting the assumption that Xi ≈T,ε Yi. QED

Note: The above proof illustrates a powerful technique known as the hybrid
argument whereby we show that two distribution C0 and C1 are close to each
other by coming up with a sequence of distributions H0, . . . ,Ht such that
Ht = C1, H0 = C0, and we can argue that Hi is close to Hi+1 for all i. This
type of argument repeats itself time and again in cryptography, and so it is
important to get comfortable with it.

The Length Extension Theorem

Extension via repetition

We now turn to showing the length extension theorem. For a warm-up, let’s
show that we can actually repeat encryptions to get an n/(n+ 1) saving.

6This is the principle that if the average grade in an exam was at least α then someone
must have gotten at least α, or in other words that if a real-valued random variable Z satisfies
EZ ≥ α then Pr[Z ≥ α] > 0.

11

Theorem (security of repetition): Suppose that (E′, D′) is a computation-
ally secure encryption scheme with n bit keys and n + 1 bit messages. Then
the scheme (E,D) where Ek1,...,kt(m1, . . . ,mt) = (E′k1

(m1), . . . , E′kT (mt)) and
Dk1,...,kt(c1, . . . , ct) = (D′k1

(c1), . . . , D′kt(ct)) is a computationally secure scheme
with tn bit keys and t(n+ 1) bit messages.

Proof: This might seem “obvious” but in cryptography, even obvious facts are
sometimes wrong, so it’s important to prove this formally. Luckily, this is a fairly
straightforward implication of the fact that computational indisinguishability is
preserved under many samples. That is, by the security of (E′, D′) we know that
for every two messages m,m′ ∈ {0, 1}n+1, Ek(m) ≈ Ek(m′) where k is chosen
from the distribution Un. Therefore by the indistinguishability of many samples
lemma, for every two tuples m1, . . . ,mt ∈ {0, 1}n+1 and m′1, . . . ,m′t ∈ {0, 1}

n+1,

(E′k1
(m1), . . . , E′kt(mt)) ≈ (E′k1

(m′1), . . . , E′kt(m
′
t))

for random k1, . . . , kt chosen independently from Un which is exactly the condi-
tion that (E,D) is computationally secure. QED

Theorem (Length Extension of ciphers): Suppose that there exists a
computaitonally secure encryption scheme (E′, D′) with key length n and message
length n + 1. Then for every polynomial t(n) there exists a computationally
secure encryption scheme (E,D) with key length n and message length t(n).

Proof: Let t = t(n). We are given a cipher E′ which can encrypt n+ 1-bit long
messages with an n-bit long key and we need to encrypt a t-bit long message
m = (m1, . . . ,mt) ∈ {0, 1}t. Our idea is simple (at least in hindsight). Let
k0←R{0, 1}n be our key (which is chosen at random). To encryptm using k0, the
encryption function will choose t random strings k1, . . . , kt←R{0, 1}n.7 We will
then encrypt the n+ 1-bit long message (k1,m1) with the key k0 to obtain the
ciphertext c1, then encrypt the n+ 1-bit long message (k2,m2) with the key k1
to obtain the ciphertext c2, and so on and so forth until we encrypt the message
(kt,mt) with the key kt−1. We output (c1, . . . , ct) as the final ciphertext.8

To decrypt (c1, . . . , ct) using the key k0, first decrypt c1 to learn (k1,m1), then
use k1 to decrypt c2 to learn (k2,m2), and so on until we use kt−1 to decrypt ct
and learn (kt,mt). Finally we can simply output (m1, . . . ,mt).

The above are clearly valid encryption and decryption algorithms, and hence the
real question becomes is it secure??. The intuition is that c1 hides all information
about (k1,m1) and so in particular the first bit of the message is encrypted
securely, and k1 still can be treated as an unknown random string even to an

7Note that this makes the encryption function probabilistic but it does not increase the size of
the key; while we didn’t explicitly say that the encryption can be probabilistic before, allowing
this is absolutely fine and in fact will be necessary for some future security requirements.

8The astute reader might note that the key kt is actually not used anywhere in the encryption
nor decryption and hence we could encrypt n more bits of the message instead in this final
round. We used the current description for the sake of symmetry and simplicity of exposition.

12

Figure 3: Constructing a cipher with t bit long messages from one with n+ 1
long messages

adversary that saw c1. Thus, we can think of k1 as a random secret key for the
encryption c2, and hence the second bit of the message is encrypted securely,
and so on and so forth.

The above looks like a reasonable intuitive argument, but to make sure it’s true
we need to give an actual proof. Let m,m′ ∈ {0, 1}t be two messages. We need
to show that EUn(m) ≈ EUn(m′). The heart of the proof will be the following
claim:

Claim: Let Ê be the algorithm that on input a message m and key k0 works
like E except that its the ith block contains E′ki−1

(k′i,mi) where k′i is a random
string in {0, 1}n, that is chosen independently of everything else including the
key ki. Then, for every message m ∈ {0, 1}t

EUn(m) ≈ ÊUn(m) .

Note that Ê is not a valid encryption scheme since it’s not at all clear there
is a decryption algorithm for it. It is just an hypothetical tool we use for
the proof. Once we prove the claim then we are done since we know that for
every pair of message m,m′, EUn(m) ≈ ÊUn(m) and EUn(m′) ≈ ÊUn(m′) but
ÊUn(m) ≈ ÊUn(m′) since Ê is essentially the same as the t-times repetition
scheme we analyzed above. Thus by the triangle inequality we can conclude that
EUn(m) ≈ EUn(m′) as we desired.

Proof of claim: We prove the claim by the hybrid method. For j ∈ {0, . . . , `},
let Hj be the distribution of ciphertexts where in the first j blocks we act like Ê
and in the last t− j blocks we act like E. That is, we choose k0, . . . , kt, k

′
1, . . . , k

′
t

independently at random from Un and the ith block ofHj is equal to E′ki−1
(ki,mi)

if i > j and is equal to E′ki−1
(k′i,mi) if i ≤ j. Clearly, Ht = ÊUn(m) and

H0 = EUn(m) and so it suffices to prove that for every j, Hj ≈ Hj+1. Indeed,

13

let j ∈ {0, . . . , `} and suppose towards the sake of contradiction that there exists
an efficient Eve′ such that

|E[Eve′(Hj)]− E[Eve′(Hj+1)]| ≥ ε (∗)

where ε = ε(n) is noticeable. By the averaging principle, there exists some fixed
choice for k′1, . . . , k′t, k0, . . . , kj−2, kj , . . . , kt such that (∗) still holds. Note that
in this case the only randomness is the choice of kj−1←RUn and moreover the
first j − 1 blocks and the last t− j blocks of Hj and Hj+1 would be identical
and we can denote them by α and β respectively and hence write (∗) as

∣∣Ekj−1 [Eve′(α,Ekj−1(kj ,mj), β)− Eve′(α,Ekj−1(k′j ,mj), β)
∣∣ ≥ ε (∗∗)

But now consider the adversary Eve that is defined as Eve(c) = Eve′(α, c, β).
Then Eve is also efficient and by (∗∗) it can distinguish between E′Un(kj ,mj)
and E′Un(k′j ,mj) thus contradicting the security of (E′, D′). QED

Appendix: The computational model

For concreteness sake let us give a precise definition of what it means for a
function or probabilistic process f mapping {0, 1}n to {0, 1}m to be computable
using T operations:

Defintion: A probabilistic straightline program consists of a sequence of lines,
each one of them one of the following forms:

• a = b NAND c where a is a variable identifier and b, c are either variables
that have been assigned a value before, or the constants 0 or 1.

• a = RAND where a is a variable identifier.
• a = INPUT where a is a variable identifier.
• OUTPUT b where b is a variable that has been assigned a value before.

Given a program π, we say that its size is the number of lines it contains. If
the program has n INPUT commands and m OUTPUT commands, we identify it
with the probabilistic process that maps {0, 1}n to {0, 1}m in the natural way.
(That is, the variables all correspond to a single bit in {0, 1}, every time INPUT
is called we take a new bit from the input, and every time OUTPUT is called we
output a new bit.)

If F is a (probabilistic or deterministic) map of {0, 1}n to {0, 1}m, the complexity
of F is the size of the smallest program π that computes it.

If you haven’t taken a class such as CS121 before, you might wonder how such
a simple model captures complicated programs that use loops, conditionals,
and more complex data types than simply a bit in {0, 1}, not to mention some
special purpose crypto-breaking devices that might involve tailor-made hardware.

14

It turns out that it does (for the same reason we can compile complicated
programming languages to run on silicon chips with a very limited instruction
set). In fact, as far as we know, this model can capture even computations
that happen in nature, whether it’s in a bee colony or the human brain (which
contains about 1010 neurons, so should in principle be simulatable by a program
that has up to a few order of magnitudes the same number of lines). Crucially,
for cryptography, we care about such programs not because we want to actually
run them, but because we want to argue about their non existence.9 If we have
a process that cannot be computed by a straightline program of length shorter
than 2128 > 1038 then it seems safe to say that a computer the size of the human
brain (or even all the human and nonhuman brains on this planet) will not be
able to perform it either.

Advanced note: The computational model we use in this class
is non uniform (corresponding to Boolean circuits) as opposed to
uniform (corresponding to Turing machines). If this distinction
doesn’t mean anything to you, you can ignore it as it won’t play
a significant role in what we do next. It basically means that we
do allow our programs to have hardwired constants of poly(n) bits
where n is the input/key length.

9An interesting potential exception to this principle that every natural process should
be simulatable by a straightline program of comparable complexity are processes where the
quantum mechanical notions of interference and entanglement play a significant role. We will
talk about this notion of quantum computing towards the end of the course, though note that
much of what we say does not really change when we add quantum into the picture. We can
still capture these processes by straightline programs (that now have somewhat more complex
form), and so most of what we’ll do just carries over in the same way to the quantum realm as
long as we are fine with conjecturing the strong form of the Cipher conjecture and similar ones,
namely that these are infeasible to break even for quantum computers. (All current evidence
points toward these strong forms being true as well.)

15

	The asymptotic approach
	Counting number of operations.
	Our first conjecture
	Why care about the cipher conjecture?
	Prelude: Computational Indistinguishability
	The Length Extension Theorem
	Extension via repetition

	Appendix: The computational model

