
CS 127: Cryptography / Boaz Barak

Lecture 0 - Mathematical Background

This is a brief review of some mathematical tools, and especially probability
theory, that we will use in this course.

At Harvard, much of this material (and more) is taught in Stat 110 “Introduction
to Probability”, CS20 “Discrete Mathemtics”, and AM107 “Graph Theory and
Combinatorics”. Some good sources for this material are the lecture notes
by Papadimitriou and Vazirani (see home page of Umesh Vaziarani), Lehman,
Leighton and Meyer from MIT Course 6.042 “Mathematics For Computer Science”
(Chapters 1-2 and 14 to 19 are particularly relevant). The mathematical tool we
use most often is discrete probability. The “Probabilistic Method” book by Alon
and Spencer is a great resource in this area. Also, the books of Mitzenmacher and
Upfal and Prabhakar and Raghavan cover probability from a more algorithmic
perspective. For an excellent popular discussion of some of the mathematical
concepts we’ll talk about, I can’t recommend highly enough the book “How Not
to Be Wrong” by Jordan Ellenberg.

Although knowledge of algorithms is not strictly necessary, it would be quite
useful. Students who did not take CS124/CS125 might want to look at the
books (1) Corman, Leiserson, Rivest and Smith, (2) Dasgupte, Papadimitriou
and Vaziarni, or (3) Kleinberg and Tardos. We do not require prior knowledge of
complexity or computability but some basic familiarity could be useful. Students
who did not take CS121/CS125 might want to look at either Sipser’s book (Intro
to Theory of Computation) or the first 2 chapters of my book with Arora.

Mathematical Proofs

Arguably the mathematical prerequisite needed for this course is a certain level of
comfort with mathematical proofs. Many students tend to think of mathematical
proofs as a very formal object, like the proofs studied in school in geometry,
consisting of a sequence of axioms and statements derived from them by very
specific rules. In fact,

a proof is a piece of writing meant to convince human readers that a
particular statement is true.

(In this class, the particular humans you are trying to convince are me and the
teaching fellows.)

To write a proof of some statement X you need to follow three steps:

1. Make sure that you completely understand the statement X.
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2. Think about X until you are able to convince yourself that X is true.

3. Think how to present the argument in the clearest possible way so you can
convince the reader as well.

Like any good piece of writing, a proof should be concise and not be overly
formal or cumbersome. In fact, overuse of formalism can often be detrimental
to the argument since it can mask weaknesses in the argument from both the
writer and the reader. Sometimes students try to “throw the kitchen sink” at
an answer trying to list all possibly relevant facts in the hope of getting partial
credit. But a proof is a piece of writing, and a badly written proof will not get
credit even if it contains some correct elements. It is better to write a clear
proof of a partial statement. In particular, if you haven’t been able to convince
yourself that the statement is true, you should be honest about it and explain
which parts of the statement you have been able to verify and which parts you
haven’t.

Example: The existence of infinitely many primes.

In the spirit of “do what I say and not what I do”, I will now demonstrate
the importance of conciseness by belaboring the point and spending several
paragraphs on a simple proof, written by Euclid around 300 BC. Recall that
a prime number is an integer p > 1 whose only divisors are p and 1. Euclid’s
Theorem is the following:

Theorem: There exist infinitely many primes.

Instead of simply writing down the proof, let us try to understand how we
might figure this proof out. (If you haven’t seen this proof before, or you don’t
remember it, you might want to stop reading at this point and try to come up
with it on your own before continuing.) The first (and often most important)
step is to understand what the statement means. Saying that the number of
primes is infinite means that it is not finite. More precisely, this means that for
every natural number k, there are not than k primes.

Now that we understand what we need to prove, let us try to convince ourselves
of this fact. At first, it might seem obvious— since there are infinitely many
natural numbers, and every one of them can be factored into primes, there must
be infinitely many primes, right?

Wrong. Since we can compose a prime many times with itself, a finite number
of primes can generate infinitely many numbers. Indeed the single prime 3
generates the infinite set of all numbers of the form 3n. So, what we really need
to show is that for every finite set of primes {p1, . . . , pk}, there exists a number
n that has a prime factor outside this set.

Now we need to start playing around. Suppose that we had just two primes p
and q. How would we find a number n that is not generated by p and q? If you
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try to draw things on the number line, you would see that there is always some
gap between multiples of p and q in the sense that they are never consecutive. It
is possible to prove that (in fact, it’s not a bad exercise) but this observation
already suggests a guess for what would be a number that is divisible by neither
p nor q, namely pq + 1. Indeed, the remainder of n = pq + 1 when dividing
by either p or q would be 1 (which in particular is not zero). This observation
generalizes and we can set n = pqr + 1 to be a number that is divisable neither
p, q nor r, and more generally n = p1 · · · , pk + 1 is not divisable by p1, . . . , pk.

Now we have convinced ourselves of the statement and it is time to think of how
to write this down in the clearest way. One issue that arises is that we want to
prove things truly from the definition of primes and first principles, and so not
assume properties of division and remainders or even the existence of a prime
factorization, without proving it. Here is what a proof could look like. We will
prove the following two lemmas:

Lemma 1: For every integer n > 1, there exists a prime p > 1 that divides n.

Lemma 2: For every set of integers p1, . . . , pk > 1, there exists a number n
such that none of p1, . . . , pk divide n.

From these two lemmas it follows that there exist infinitely many primes, since
otherwise if we let p1, . . . , pk be the set of all primes, then we would get a
condtradiction as by combining Lemma 1 and Lemma 2 we would get a number
n with a prime factor outside this set. We now prove the lemmas:

Proof of Lemma 1: Let n > 1 be a number, and let p be the smallest divisor
of n that is larger than 1 (there exists such a number p since n divides itself).
We claim that p is a prime. Indeed suppose otherwise there was some 1 < q < p
that divides p. Then since n = pc for some integer c and p = qc′ for some integer
c′ we’ll get that n = qcc′ and hence q divides n in contradiction to the choice of
p as the smallest divisor of n. QED

Proof of Lemma 2: Let n = p1 · · · pk + 1 and suppose for the sake of contra-
diction that there exists some i such that n = pi · c for some integer c. Then if
we divide the equation n− p1 · · · pk = 1 by pi then we get c minus an integer on
the lefthand side, and the fraction 1/pi on the righthand side. QED

Some basic notation and concepts.

I will assume familiarity with basic notions of sets and operations on sets such as
union (denoted ∪), intersection (denoted ∩), and set substraction (denoted \). We
denote by |A| the size of the set A. I also assume familiarity with functions, and
notions such as one-to-one (injective) functions and onto (surjective) functions.
If f is a function from a set A to a set B, we denote this by f : A → B. If f
is one-to-one then this implies that |A| ≤ |B|. If f is onto then |A| ≥ |B|. If
f is a permutation/bijection (e.g., one-to-one and onto) then this implies that
|A| = |B|.
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I also assume familiarity with big-Oh notation: If f, g are two functions from N
to N, then (1) f = O(g) if there exists a constant c such that f(n) ≤ c · g(n) for
every sufficiently large n, (2) f = Ω(g) if g = O(f), (3) f = Θ(g) is f = O(g)
and g = O(f), (4) f = o(g) if for every ε > 0, f(n) ≤ ε ·g(n) for every sufficiently
large n, and (5) f = ω(g) if g = o(f).

To emphasize the input parameter, I often write f(n) = O(g(n)) instead of
f = O(g), and use similar notation for o,Ω, ω,Θ. While this is only an imprecise
heuristic, when you see a statement of the form f(n) = O(g(n)) you can often
replace it in your mind by the statement f(n) ≤ 1000g(n) while the statement
f(n) = Ω(g(n)) can often be thought of as f(n) ≥ 0.001g(n) .

If n is an integer, then we denote by a (mod n) the remainder of a when divided
by n. a (mod n) is the number r ∈ {0, . . . , n− 1} such that a = kn+ r for some
integer k. It will be very useful that a (mod n) + b (mod n) = (a+ b) (mod n)
and a (mod n) · b (mod n) = (a · b) (mod n) and so modular arithmetic inherits
all of the rules (associativity, commutativity etc..) of integer arithmetic. If a, b
are positive integers then gcd(a, b) is the largest integer that divides both a and
b. It is known that for every a, b there exist (not necessarily positive) integers
x, y such that ax+ by = gcd(a, b) (it’s a good exercise to prove this on your own).
In particular, if gcd(a, n) = 1 then there exists a modular inverse for a which is
a number b such that ab = 1 (mod n). We sometimes write b as a−1 (mod n).

For a set S, we denote by Sk the set of k-tuples from S. The most common
case would be for S = {0, 1} in which case Sk is the set of 0/1-valued strings
of length k. The set S∗ is defined as the set of all finite tuples from S. (i.e.,
S∗ = S1∪S2∪· · ·). If a, b ∈ {0, 1}, then the AND,OR,XOR and NOT operations
are defined respectively by a∧b = ab, a∨b = a+b−ab, a⊕b = a+b (mod 2), and
¬a = 1− a. Every function f : {0, 1}n → {0, 1} can be obtained by combining
these operations.

In later parts of the course we will need the notions of matrices, vectors, matrix
multiplication and inverse, determinant, eigenvalues, and eigenvectors. These
can be picked up in any basic text on linear algebra. In some parts we might
also use some basic facts of group theory (finite groups only, and mostly only
commutative ones). These also can be picked up as we go along, and a prior
course on group theory is not necessary.

Probability and Sample spaces

Perhaps the main mathematical background needed in cryptography is probability
theory since, as we will see, there is no secrecy without randomness. Luckily,
we only need fairly basic notions of probability theory and in particular only
probability over finite sample spaces. If you have a good understanding of what
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happens when we toss k random coins, then you know most of the probability
you’ll need.

For every probabilistic experiment (for example, tossing a coin or throwing 3
dice) the set of all possible results of the experiment is called a sample space.
For example, if the experiment is to toss a single coin and see if the result is
“heads” or “tails” then the sample space is the set {H,T}, or equivalently (if we
denote heads by 1 and tails by 0) the set {0, 1}. As another example, consider
the experiment of tossing three coins. In this case there are 8 possible results and
hence the sample space is {000, 001, 010, 011, 100, 101, 110, 111}. Each element
in the sample space gets chosen with probability 1

2 ·
1
2 ·

1
2 = 1

23 = 1
8 .

Our sample space S will always be finite, and often it will be the case that all
elements s in S are equally likely. In fact, in many cases our sample space S will
be the 2k-sized set {0, 1}k corresponding to tossing k coins, with the probability
of any particular k-length sequence s of heads and tails (or zeroes and ones)
being 2−k. We will use the notation x←R{0, 1}k to denote that x is sampled
uniformly at random from this sample space, and sometimes also use Uk to
denote the same distribution.

Events

An event is a subset of the sample space. The probability that an event happens
is the probability that the result of the experiment will fall inside that subset.
For example, if we consider the sample space of tossing 101 coins, then we can
denote by A the event that most of the coins came up tails — at most 50 of the
coins come up “heads”. In other words, A is the set of all length-101 strings with
at most 50 ones. We denote the probability that an event A occurs by Pr[A].
For example, in this case we can write

Pr
x←R{0,1}101

[# of 1’s in x ≤ 50] = 1
2

Proof: Let A = {x : # of 1’s in x ≤ 50} as above. Let f be the function that
flips all the bits of x from 1 to 0 and vice versa. Then f is a one-to-one and onto
function from A to its complement A = {0, 1}101 \ A, meaning that |A| = |A|
and since the A and A are disjoint sets whose union is

Pr[A ∪A′] ≤ Pr[A] + Pr[A′]

We omit the (very simple) proof– can you see why this is true?

{0, 1}101 it follows that |A| = 2101

2 . QED
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Union Bound

If A and A′ are events over the same sample space then another way to look at
the probability that either A or A′ occurs is to say that this is the probability
that the event A ∪A′ (the union of A and A′) occurs. A very simple but useful
bound is that this probability is at most the sum of the probability of A and the
probability of A′. This is called the union bound

Theorem (Union bound): If S is a sample space and A,A′ ⊆ S are two
events over S. Then,

Note that that there are examples of A and A′ such that Pr[A ∪A′] is strictly
less than Pr[A] + Pr[A′]. For example, this can be the case if A and A′ are
the same set (and hence A ∪ A′ = A). If A and A′ are disjoint (i.e., mutually
exclusive) then Pr[A ∪A′] = Pr[A] + Pr[A′].

Random Variables

A random variable is a function that maps elements of the sample space to
another set (often, but not always, to the set R of real numbers). For example,
in the case of the uniform distribution over {0, 1}101, we can define the random
variable N to denote the number of ones in the string chosen. That is, for every
x ∈ {0, 1}101, N(x) is equal to the number of ones in x. Thus, the event A we
considered before can be phrased as the event that N ≤ 50 and the formula
above can be phrased as

Pr
x←R{0,1}101

[N(x) ≤ 50] = 1
2

For the remainder of this lecture, we will only consider real random variables
(that is random variables whose output is a real number).

Expectation

The expectation of a random variable is its weighted average. That is, it is the
average value it takes, when the average is weighted according to the probability
measure on the sample space. Formally, if N is a random variable on a sample
space S (where for every x ∈ S, the probability that x is obtained is given by
px) then the expectation of N , denoted by E[N ] is defined as follows:

E[N ] :=
∑
x∈S

N(x) · px

For example, if the experiment was to choose a random U.S. citizen (and hence
the sample space is the set of all U.S. citizens) and we defined the random
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variable H to be the height of the person chosen, then the expectation of H
(denoted by E[H]) is simply the average height of a U.S. citizen.

There can be two different random variables with the same expectation. For
example, consider the sample space {0, 1}101 with the uniform distribution, and
the following two random variables:

• N is the random variable defined above: N(x) is the number of ones in x.

• M is defined as follows: if x is the all ones string (that is x = 1101) then
M(x) = 50.5 · 2101. Otherwise (if x 6= 1101) then M(x) = 0.

The expectation of N equals 50.5 (this follows from the linearity of expectation,
see below).

The expectation of M is also 50.5: with probability 2−101 it will be 2101 · 50.5
and with probability 1− 2−101 it will be 0.

Note that even though the average of M is 50.5, the probability that for a
random x, M(x) will be close to 50.5 or even bigger than zero is very very small.
This is similar to the fact that if Bill Gates is in a room with any group of
99 people, no matter how pool, then the average worth of a random person
in this room is more than $100M even though with probability 0.99 a random
person in the room will be worth much less than that amount. Hence the name
“expectation” is somewhat misleading.

In contrast, we will see from the Chernoff bound below, that for a random string
x, even though it will never have N(x) equal to exactly 50.5 (after all, N(x) is
always a whole number), with high probability N(x) will be close to 50.5.

The fact that two very different variables can have the same expectation means
that if we know the expectation it does not give us all the information about
the random variable but only partial information.

Linearity of expectation. The expectation function has a very useful property
which is that it is a linear function. That is, if N and M are random variables
over the same sample space S, then we can define the random variable N +M
in the natural way: for every x ∈ S, (N +M)(x) = N(x) +M(x). It turns out
that E[N +M ] = E[N ] + E[M ]. For every fixed number c and random variable
N we define the random variable cN in the natural way: (cN)(x) = c ·N(x) It
turns out that E[cN ] = cE[N ].

For example, the random variable N above is equal to X1 + · · ·+X101 with Xi

equalling the ith bit of the chosen string. Since E[Xi] = (1/2) ·0 + (1/2) ·1 = 1/2,
E[N ] = 101 · (1/2) = 50.5.

Deviation bounds

As we saw above, sometimes we want to know not just the expectation of a
random variable but also the probability that the variable is close to (or at
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least not too far from) its expectation. Bounds on this probability are often
called “tail bounds” or “deviation bounds”. We now discuss the most common
such bounds. Their general flavor is that the more you know about the random
variable (which usually amounts to knowing higher moments of the random
variables - expectations of powers larger than one) the better you can bound its
deviation from the expectation.

Markov Inequality

The simplest tail bound is Markov’s inequality, which is a one-sided inequality.
It says that with high probability a non-negative random variable is never much
larger than its expectation. (Note that the random variable M defined above
was an example of a non-negative random variable that with high probability is
much smaller than its expectation.) That is, it is the following theorem:

Theorem (Markov’s Inequality): Let X be a random variable over a sample
space S such that for all s ∈ S, X(s) ≥ 0. Let k ≥ 1. Then,

Pr[X ≥ kE[X]] ≤ 1
k

proof: Denote µ = E[X] and let A = {s ∈ S | X(s) ≥ kµ}. By the definition of
expectation

E[X] =
∑
s∈S

X(s) Pr[s] =
∑
s∈A

X(s) Pr[s] +
∑
s6∈A

X(s) Pr[s] .

Since the second term is non-negative

µ ≥
∑
s∈A

X(s) Pr[s] .

However, we know that for each s ∈ A, X(s) ≥ kµ and hence

∑
x∈A

X(s) Pr[s] ≥ kµ
∑
s∈A

Pr[s] = kµPr[A]

. Combining these two equations we get µ ≥ kµPr[A] or Pr[A] ≤ 1/k which is
what we wanted to prove. QED
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Variance and Chebychev inequality

We already noted that the distance from the expectation is an interesting
parameter. Thus, for a random variable X with expectation µ we can define
a new random variable X̃ which to be the distance of X from its expectation.
That is, for every s ∈ S, we define X̃(s) = |X(s)− µ|. (Recall that | · | denotes
the absolute value.) It turns out that it is hard to work with X̃ and so we look
at the variable X̃2, which is equal to (X − µ)2. We define the variance of a
random variable X to be equal to the expectation of X̃2. That is, for X with
E[X] = µ,

V ar[X] := E[X̃2] = E[(X − µ)2]

In other words V ar[X] is defined to be E[(X − E[X])2].

We define the standard deviation of X to be the square root of V ar[X].

If we have a bound on the variance then we can have a better tail bound on the
variables:

Theorem (Chebyshev’s inequality): Let X be a random variable over S
with expectation µ and standard deviation σ. Let k ≥ 1. Then,

Pr[|X − µ| ≥ kσ] ≤ 1/k2

Proof: The variable Y = (X − µ)2 is non-negative and has expectation
V ar(X) = σ2. Therefore, by Markov inequality,

Pr[(X − µ)2 ≥ k2σ2] = Pr[Y ≥ k2σ2] ≤ 1/k2 .

However, since |X−µ| ≥ kσ holds if and only if (X−µ)2 ≥ k2σ2 the probability
of these two events is identical. Thus Pr[|X − µ| ≥ kσ] ≤ 1/k2. QED

Conditional probabilities and independence

Let A be some event over a sample space S (with Pr[A] > 0). By a probability
conditioned on A we mean the probability of some event, assuming that we
already know that A happened. For example if S is our usual sample space of
uniform choices over {0, 1}101 and A is the event that the first coin turned out
head, then the conditional space is the space of all length-101 strings whose first
bit is 1.

Formally this is defined in the natural way: we consider A as a sample space by
inheriting the probabilities from S (and normalizing so the probabilities will sum
up to one). That is, for every x ∈ A we define Pr[x|A] (the probability that x is
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chosen conditioned on A) to be Pr[x]/Pr[A]. For an event B we define Pr[B|A]
(the probability that B happens conditioned on A) to be

∑
x∈A∩B Pr[x|A] =

Pr[A ∩B]/Pr[A].

Independent events. We say that B is independent from A if Pr[B|A] = Pr[B].
That is, knowing that A happened does not give us any new information on the
probability that B will happen. By plugging the formula for Pr[B|A] we see
that B is independent from A if and only if

Pr[B ∩A] = Pr[A] Pr[B]

This means that B is independent from A iff A is independent from B and hence
we simply say that A and B are independent events.

For example, if, as above, A is the event that the first coin toss is heads and B
is the event that the second coin toss is heads then these are independent events.
In contrast if C is the event that the number of heads is at most 50 then C and
A are not independent (since knowing that A happened increases somewhat the
chances for C).

If we have more than two events then it’s a bit more messy: we say that the
events A1, . . . , An are mutually independent if not only Pr[A1 ∩A2 ∩ · · · ∩An] =
Pr[A1] · · ·Pr[An] but also this holds for every subset of A1, . . . , An. That is, for
every subset I of the numbers {1, . . . , n},

Pr[∩i∈IAi] =
∏
i∈I

Pr[Ai]

Independent random variables. We say that U and V are independent
random variables if for every possible values u and v, the events U = u
and V = v are independent events or in other words Pr[U = u and V = v] =
Pr[U = u] Pr[V = v]. We say that U1, . . . , Un are a collection of independent
random variables if for all values u1, . . . , un, the events U1 = u1, . . . , Un = un
are mutually independent.

The Chernoff Bound

Suppose that 60% of a country’s citizens prefer the color blue over red. A poll is
the process of choosing a random citizen and finding his or her favorite color.
Suppose that we do this n times and we define the random variable Xi to be 0 if
the color of the ith person chosen is red and 1 if it is blue. Then, for each i the
expectation E[Xi] is 0.6, and by linearity of expectation E[

∑n
i=1 Xi] = 0.6n. The

estimate we get out of this poll for the fraction of blue-preferrers is
∑

Xi

n and we
would like to know how close this is to the real fraction of the population (i.e.,
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0.6). In other words, for any ε > 0, we would like to know what is the probability
that our estimate will be ε off from the real value, i.e., that |

∑
Xi

n − 0.6| > ε.

It turns out that in this case we have a very good bound on the deviation of
∑
Xi

from its expectation, and this is because all of the Xi’s are independent random
variables (since in each experiment we draw a new random person independently
of the results of previous experiments). This is the Chernoff bound, which we
state here in a simplified form:

Theorem (Chernoff bound): Let X1, . . . , Xn be independent random vari-
ables with 0 ≤ Xi ≤ 1 and E[Xi = µ]. Then,

Pr
[∣∣∣∣∑Xi

n
− µ

∣∣∣∣ > ε

]
< 2−ε

2n/4

We omit the proof that can be found in many of the texts mentioned above,
though see the exercises for a proof of an important special case.

Exercises

The following exercises will be part of the first problem set in the course, so you
can get a head start by working on them now.

1. In the following exercise X,Y denote random variables over some sam-
ple space S. You can assume that the probability on S is the uniform
distribution— every point s is output with probability 1/|S|. Thus
E[X] = (1/|S|)

∑
s∈S X(s). We define the variance and standard de-

viation of X and Y as above (e.g., V ar[X] = E[(X − E[X])2] and the
standard deviation is the square root of the variance).

1. Prove that V ar[X] is always non-negative.

2. Prove that V ar[X] = E[X2]− E[X]2.

3. Prove that always E[X2] ≥ E[X]2.

4. Give an example for a random variable X such that E[X2] 6= E[X]2.

5. Give an example for a random variable X such that its standard
deviation is not equal to E[|X − E[X]|].

6. Give an example for two random variables X,Y such that E[XY ] =
E[X]E[Y ].

7. Give an example for two random variables X,Y such that E[XY ] 6=
E[X]E[Y ].

8. Prove that if X and Y are independent random variables (i.e., for
every x, y, Pr[X = x∧Y = y] = Pr[X = x] Pr[Y = y]) then E[XY ] =
E[X]E[Y ] and V ar[X + Y ] = V ar[X] + V ar[Y ].
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2. Suppose that H is chosen to be a random function mapping the numbers
{1, . . . , n} to the numbers {1, ..,m}. That is, for every i ∈ {1, . . . , n}, H(i)
is chosen to be a random number in {1, . . . ,m} and that choice is done
independently for every i. For every i < j ∈ {1, . . . , n}, define the random
variable Xi,j to equal 1 if there was a collision between H(i) and H(j) in
the sense that H(i) = H(j) and to equal 0 otherwise.

1. For every i < j, compute E[Xi,j ].

2. Define Y =
∑
i<j Xi,j to be the total number of collisions. Compute

E[Y ] as a function of n and m. In particular your answer should
imply that if m < n2/1000 then E[Y ] > 1 and hence in expectation
there should be at least one collision and so the function H will not
be one to one.

3. Prove that if m > 1000 · n2 then the probability that H is one to one
is at least 0.9.

4. Give an example of a random variable Z (unrelated to the function
H) that is always equal to a non-negative integer, and such that
E[Z] ≥ 1000 but Pr[Z > 0] < 0.001.

5. Prove that if m < n2/1000 then the probability that H is one to one
is at most 0.1.

3. In this exercise we we will work out an important special case of the
Chernoff bound. You can take as a given the following facts:

1. The number of x ∈ {0, 1}n such that
∑
xi = k is

(
n
k

)
= n!

k!(n−k)! .

2. Stirling’s approximation formula: for every n ≥ 1,

√
2πn

(
n
e

)n ≤ n! ≤ 2
√

2πn
(
n
e

)n
where e = 2.7182 . . . is the base of the natural logarithm.

Do the following:

1. Prove that for every n, Prx←R{0,1}n [
∑
xi ≥ 0.6n] < 2−n/1000

The above shows that if you were given a coin of bias at least 0.6, you
should only need some constant number of samples to be able to reject the
“null hypothesis” that the coin is completely unbiased with extremely high
confidence. In the following somewhat more challenging questions (which
can be considered as bonus exercise) we try to show a converse to this:

1. Let P be the uniform distribution over {0, 1}n and Q be the 1/2 + ε-
biased distribution corresponding to tossing n coins in which each
one has a probability of 1/2 + ε of equalling 1 and probability 1/2− ε
of equalling 0. Namely the probability of x ∈ {0, 1}n according to Q
is equal to

∏n
i=1(1/2− ε+ 2εxi).

12



1. Prove that for every threshold θ between 0 and n, if n < 1/(100ε)2

then the probabilities that
∑
xi ≤ θ under P and Q respectively

differ by at most 0.1. Therefore, one cannot use the test whether
the number of heads is above or below some threshold to reliably
distinguish between these two possibilities unless the number of
samples n of the coins is at least some constant times 1/ε2.

2. Prove that for every function F mapping {0, 1}n to {0, 1}, if
n < 1/(100ε)2 then the probabilities that F (x) = 1 under P and
Q respectively differ by at most 0.1. Therefore, if the number
of samples is smaller than a constant times 1/ε2 then there is
simply no test that can reliably distinguish between these two
possiblities.

13
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