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Abstract

A desirable goal for cryptographic protocols is to guar-
antee security when the protocol is composed with other
protocol instances. Universally Composable (UC) protocols
provide this guarantee in a strong sense: A protocol re-
mains secure even when composed concurrently with an un-
bounded number of instances of arbitrary protocols. How-
ever, UC protocols for carrying out general tasks are known
to exist only if a majority of the participants are honest, or
in the common reference string (CRS) model where all par-
ties are assumed to have access to a common string that
is drawn from some pre-defined distribution. Furthermore,
carrying out many interesting tasks in a UC manner and
without honest majority or set-up assumptions is impos-
sible, even if ideally authenticated communication is pro-
vided.

A natural question is thus whether there exist more re-
laxed set-up assumptions than the CRS model that still al-
low for UC protocols. We answer this question in the affir-
mative: we propose alternative and relaxed set-up assump-
tions and show that they suffice for reproducing the general
feasibility results for UC protocols in the CRS model. These
alternative assumptions have the flavor of a “public-key in-
frastructure™: parties have registered public keys, no sin-
gle registration authority needs to be fully trusted, and no
single piece of information has to be globally trusted and
available. In addition, unlike known protocols in the CRS
model, the proposed protocols guarantee some basic level
of security even if the set-up assumption is violated.

1. Introduction

Designing protocols that guarantee security in open,
multi-protocol, multi-party execution environments is a
challenging task. In such environments a protocol in-
stance is executed concurrently with an unknown number
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of instances of the protocol, as well as arbitrary other pro-
tocols. Indeed, it has been demonstrated time and again
that adversarially-coordinated interactions between differ-
ent protocol instances can compromise the security of pro-
tocols that were demonstrated to be secure when run in
isolation (see, e.g., [GK90, DDNO00, KSW97, DNS98]). A nat-
ural way for guaranteeing security of protocols in such
complex execution environments is to require that pro-
tocols satisfy a notion of security that provides a gen-
eral secure composability guarantee. That is, it should
be guaranteed that a secure protocol maintains its se-
curity even when composed with (i.e., runs alongside)
arbitrary other protocols. Such a general notion of secu-
rity is provided by the universally composable (UC) security
framework [co1], which provides a very general com-
posability property: A secure protocol is guaranteed to
maintain its security (in the sense of emulating an ide-
ally trusted and secure service) even when run concurrently
with multiple copies of itself, plus arbitrary network activ-
ity.

However, such strong secure composability properties
come at a price: Carrying out many interesting crypto-
graphic tasks in the UC framework has been shown to be im-
possible in the plain model, unless a majority of the partici-
pants are completely honest [co1, CF01, cKL03]. The impos-
sibility holds even if ideally authenticated communication
is guaranteed. Furthermore, it has been shown [L03, L04]
that this impossibility is not a result of technical character-
istics of any particular framework; rather, they are inherent
to the strong composability requirements.

In light of these results, researchers have turned to con-
structing protocols under some setup assumptions. Specifi-
cally, the common reference string (CRS) model was used.
In this model, originally proposed in [BFM88], all parties
have access to a common string r that was ideally drawn
from some publicly known distribution. (In the case of
[BFMa88g], this was the uniform distribution.) It is further as-
sumed that no secret information correlated with this string
is known. (It can be thought of as if this string is pub-
lished by some “trusted dealer” that plays no further part
in the protocol execution). Several strong feasibility results



are known in the CRS model. In particular, it was shown
that practically any functionality can be realized by a UC
protocol in the CRS model, with any number of faults, as-
suming authenticated communication [CF01, CL0OS02]. Fur-
thermore, non-interactive UC Zero-Knowledge protocols
were constructed in the CRS model model under similar as-
sumptions (and assuming secure data erasure is possible)
[DDOt01, CcLOSO2].

Drawbacks of the CRS model. Security in the CRS model
depends in a crucial way on the fact that the common string
is chosen properly. That is, the model provides no secu-
rity guarantees in the case that the common string is chosen
from a different distribution than the specified one, or when
some “secret trapdoor information” correlated with the ref-
erence string is leaked. In fact, in most existing protocols in
the CRS model the security proof actually provides an ef-
ficient strategy for completely breaking the security of the
protocol when the reference string can be chosen in a mali-
cious way. In particular, if the CRS is chosen by a single en-
tity then this entity could, if it wished, read sensitive data,
forge proofs, and in general completely undermine the se-
curity of the protocol, all in a way that is undetectable by
the honest parties. This means that the naive way of realiz-
ing the CRS model by letting a single entity choose the ref-
erence string forces all the participants to put absolute trust
in this entity.

Our approach. We reproduce the above feasibility results,
proven in the CRS model, in a number of alternative mod-
els (or, “set-up assumptions”). The main advantage of these
alternative models is that they are realizable in ways that re-
duce the trust that the participants need to put in other enti-
ties. All these models have a common theme: They avoid
the need that all participants in a protocol execution put
complete trust in a single entity, or a single reference string.
Instead, we adopt a trust model that somewhat resembles the
trust model of a “public-key infrastructure.” That is, each
party registers a “public key” with a “registration author-
ity” that it trusts. In order to engage in a joint computa-
tion, the participants obtain the public keys of each other
from the respective authorities. The trust that each partici-
pant has to put in other authorities, except for the authority
it is registered with, is quite minimal; thus no single entity
needs to be completely trusted by all participants. Our pro-
tocols do not require parties to keep any secret data that is
associated with their public keys. Furthermore, they are nat-
urally aligned with the standard trust model of a public-key
infrastructure, that is anyhow needed for obtaining authenti-
cated communication. They also provides better “plausible
deniability” properties.

Our resultsin more detail. We first formulate a “key reg-
istration (KR) service” that captures the “minimal com-
mon denominator” of several set-up scenarios. That is, we
demonstrate how this service can be realized in each one

of these scenarios. Then, we show how to reproduce the
above results given this service. All our results hold in face
of any number of adaptively corrupted parties. (Technically,
the KR service is captured as an “ideal functionality” within
the UC framework. See details within.)

The key registration service is parameterized by a func-
tion f : {0,1}* — {0,1}* (representing a method for de-
riving the public key from a seed, that represents the secret
key), and provides roughly the following “ideal services”.
Any party can register with the KR service and obtain a pub-
lic key in return. In a “normal” registration process, the reg-
istering party obtains a public key v = f(r) for some uni-
formly chosen r that is known only to the service. (Such
keys are called safe.) In addition, a corrupted party may
provide the service with any arbitrary » and have its pub-
lic key set to f(r). (Such keys are called well-formed.) Fur-
thermore, uniqueness of keys is not guaranteed: the pub-
lic key of any party may be set as equal to the public key
of any other party, subject to the sole restriction that honest
parties are assigned safe keys. Parties may also have multi-
ple keys. Whenever a party asks the service for the public
key of another party, the service returns one of the keys reg-
istered for that party.

This formulation of the KR service provides relatively
weak security guaranteed to users. It captures either a sin-
gle entity that provides keys to all parties (such as in the case
of a CRS), or a collection of separate entities, where no sin-
gle entity is trusted by all parties. The difference between
the powers of honest and corrupted registering parties, and
the ability to copy keys, models the fact that a party can
put less trust in registration services chosen be other par-
ties than it can put in its own registration service. Specif-
ically, a party can trust only its own key to be safe. Other
keys may be only well-formed.

We show how to realize any ideal functionality given
a KR service with an appropriate choice of the derivation
function f. Our constructions are natural adaptations of the
[cFo1, cLOS02, DNO2] constructions and rely on the same
cryptographic assumptions. We also show how to construct
non-interactive UC Zero-Knowledge protocols given a KR
service with an appropriate f. Here our construction is quite
different than existing ones, as no natural extension of the
existing constructions seems to work.

We show that the KR service can be easily realized in
a number of natural settings (or, trust models). A first such
model is the CRS model itself (thus demonstrating that the
KR service model is indeed a relaxation of the CRS model).
Other trust models include a number of “PKI-like” settings
where the parties have access to registration authorities that
either choose public keys for the registering parties, or al-
ternatively expect the registering party to exhibit the secret
seed that corresponds to the registered public key. These
models constitute a sequence where the trust in the registra-



tion authorities becomes weaker and weaker. See details in
Section 3.

Our trust assumptions should be contrasted with the
more standard trust assumptions on registration authorities
for the purpose of providing authenticated communication.
(These assumptions are formalized within the UC frame-
work in [co4], where it is also shown that without trust as-
sumptions no authenticated communication is possible.) Es-
sentially, for the purpose of providing authenticated com-
munication, the registration authority should simply regis-
ter the registrant’s identity together with a public value that
is provided by the registrant, and supply the registered pub-
lic key of any party upon request. This is a strictly weaker
trust assumption than that the KR service. However, for the
purpose of guaranteeing authentication it is essential that
the keys of each two honest parties are different from each
other, and furthermore that each party maintains a secret
key associated with its public key. In contrast, in our case
the keys of honest parties can be identical and no secret in-
formation related to those keys needs to be known.

Finally, we consider the case where parties have no trust

whatsoever in the registration services used by other par-
ties. (This setting can be thought of as the setting where
each party runs its own registration service which registers
only itself.) Here we’re back in the plain model of compu-
tation, thus UC computation is in general impossible. Yet,
our protocols still provide some security guarantees. Specif-
ically, we demonstrate that they remain secure with respect
to the standard notion of stand-alone security (as in, say,
[co0]).
Our Techniques. We use two different types of techniques:
one for realizing general functionalities (i.e., re-establishing
the [cLOs02] results), and another for constructing non-
interactive UC Zero-Knowledge protocols. We sketch them
in order. Recall that the [cL0OS02] general construction for
realizing any ideal functionality proceeds as follows. First,
a UC Commitment protocol, i.e. a protocol that realizes the
ideal commitment functionality, is constructed. Next, any
functionality is realized given ideal commitment. It thus
suffices for our purpose to demonstrate how to realize the
ideal commitment functionality in our model. Recall that
the ideal commitment functionality comes in two flavors:
Feom, Which handles a single commitment, and F,com.,
which handles multiple commitments. We concentrate on
the more challenging task of realizing F.com; this allows
us to run multiple commitments (and, consequently, multi-
ple copies of our protocols for realizing any functionality)
using a single public key per party.

Our starting point is an observation that existing proto-
cols for realizing Foncom in the CRS model actually use
the CRS for two separate purposes, called extractability and
equivocation. (A sketch of these properties appears within.)
Furthermore, the CRS consists of two separate parts, where

each part is used to guarantee only one of the properties. Fi-
nally, extractability is a concern only when the committer is
corrupted, and equivocation is a concern only when the re-
ceiver is corrupted. It thus seems natural to “split” the CRS
between the public keys of the committer and the receiver,
where each party holds the corresponding part. That is, the
public key of each party will consist of a part guaranteeing
extractability for the commitments where it plays the com-
mitter, plus a part guaranteeing equivocation for the com-
mitments where it plays the receiver. We show that this ap-
proach works, modulo some technical complications. In an-
other “twist,” taken from [DN02], we show how to realize
Fmeom I a setting where only the committer has a regis-
tered public key.

Next we sketch our approach for constructing non-

interactive UC Zero-Knowledge protocols. Here the
exiting protocols are not so naturally amenable to separat-
ing the CRS. Specifically, all known constructions use the
so-called “hidden bit model” (see, e.g., [GoL01]), where the
same string is used to guarantee the concerns of both par-
ties, i.e. extractability and simulatability. We thus propose
a new construction, that allows for such separation: Es-
sentially, the parties will run the ZAP protocol of [DNO00],
where the verifier’s challenge is included in its pub-
lic key. In addition, the verifier’s public key will contain ad-
ditional information that guarantees simulatability, and the
prover’s public key contains information that allows ex-
tracting the witness.
Obtaining plausible deniability. An intriguing property of
traditional zero-knowledge protocols in the plain model is
that the interaction is “deniable” for the prover, in the sense
that the verifier cannot later “convince” a third party, who
did not witness the interaction, that the interaction took
place. Essentially, this is so since the verifier can, using the
simulator guaranteed by the zero-knowledge property, gen-
erate a valid-looking transcript of an interaction even when
the verifier never actually interacted with the prover. The
crucial property here is that there exists a simulator that
needs only information that is locally known to the veri-
fier. We call this property self simulatability, and generalize
it in a natural way to two-party protocols for any task.*

Interestingly, zero-knowledge and other secure two-
party protocols in the CRS model are not necessar-
ily self-simulatable, since that model allows the simulator
to use “trapdoor information” on the CRS that is not avail-
able to the parties in a real execution. Furthermore, none
of the known zero-knowledge and general two party proto-
cols in the UC framework are self-simulatable.

1 Wedo not use the term “deniability” since it means different thingsin
different contexts. For instance, in the context of encryption and vot-
ing, deniability means the ability of the sender of data (or voter) to
equivocate its local data and randomness even when the true commu-
nication transcript is known (seee.g. [BT94, CDNQO97)).



Our constructions, both of UC non-interactive zero-

knowledge and of protocols for realizing any two-party
functionality, are self-simulatable for some of the instanti-
ations of the KR service. (Specifically, we need an instan-
tiation where each party explicitly provides its secret seed
to the registration service.) This may be regarded as an ad-
ditional advantage of our protocols over existing ones. We
note that the way we achieve self-simulatability is reminis-
cent of the technique of Jakobsson et. al. [3s196].
Related Work. Prabhakaran and Sahai [Ps04] have recently
proposed a way to relax the UC framework so as to allow
general secure computation in the plain model while main-
taining the ability to prove the universal composition the-
orem. This approach is complementary to ours: While we
investigate how far can one relax the set-up assumptions
within the UC framework, they investigate how far can one
relax the framework itself, while still guaranteeing some
sort of security and composability in certain cases. In par-
ticular, while they make no set-up assumptions, the secu-
rity guarantees provided by their notion are strictly weaker
than the ones provided here.

Herzog, Liskov and Micali [HLM03] use an enhanced
public-key model that has some similarities to our model,
in order to obtain plaintext-aware encryption.
Organization. Section 2 contains some brief background
on the UC framework. Section 3 presents the key registra-
tion model and discusses how it can be realized. Section 4
shows how to realize any well-formed functionality in the
key registration model. Section 5 sketches our construction
of UC non-interactive ZK protocols, and Section 6 sketches
our argument that the protocols we construct remain stand-
alone secure even if all the trust assumptions fail. The pre-
sentation in this extended abstract is quite informal. More
rigorous treatment is provided in [BCNP04] .

2. TheUC framework and the CRS mode€

We provide a brief overview of the universally compos-
able security framework of [co1]. The framework allows
for defining the security properties of cryptographic tasks
so that the security of protocols is maintained under a gen-
eral composition operation with an unbounded number of
instances of arbitrary protocols running concurrently in the
system. This composition operation is called universal com-
position. Similarly, definitions of security in this framework
are called universally composable (UC).

As in other general definitions (e.g., [MR91, B91, C00,
PWO00]), we use the definitional approach of [GMws7],
where a protocol is said to securely realize a given task if
running the protocol amounts to “emulating” an ideal pro-
cess where the parties and the adversary hand their inputs
to a trusted party that locally evaluates the appropriate out-
puts and hands them back to the parties. The algorithm run

by the trusted party (which is aimed at capturing the re-
quirements of the task at hand) is called an ideal function-
ality. This algorithm may simply evaluate a function of the
inputs of the parties, or alternatively be an ongoing reac-
tive process where inputs and outputs occur repeatedly over
time and local state is maintained.

The model of computation includes the parties running
the protocol, an adversary A that controls the communica-
tion channels and potentially corrupts parties, and an en-
vironment Z that generates the inputs to all parties, reads
all outputs, and in addition interacts with the adversary in
an arbitrary way throughout the computation. (The interac-
tion between A and Z models the inevitable “information
flow” between a protocol execution and the rest of the sys-
tem, including other protocols running concurrently.) A pro-
tocol “emulates” the ideal process with a given ideal func-
tionality F if for any “real-life” adversary A there exists
an “ideal-process adversary” S, such that no environment
Z can tell whether it is interacting with .4 and parties run-
ning the protocol, or with S and parties that interact with F
in the ideal process. In a sense, here Z serves as an “inter-
active distinguisher” between a run of the protocol and the
ideal process with access to F.

In addition to serving as a security criterion for proto-
cols, the concept of a “trusted party” is used also to cap-
ture semi-idealized computation, and in particular set-up as-
sumptions. Specifically, given an ideal functionality F, the
F-hybrid model is defined as the model where the parties
have, in addition to the usual communication mechanisms,
also access to multiple copies of a trusted party running F.
The copies of F are identified via session IDs (SIDs). That
is, each call to a copy of F and each response from this copy
should hold the SID of that copy.

The following universal composition theorem is proven
in [co1]. Consider a protocol 7 that operates in the F-hybrid
model, and let p be a protocol that securely realizes F as
sketched above. Let the composed protocol «” be identi-
cal to 7 with the exception that the interaction with each
copy of F is replaced with an interaction with a separate
instance of p. Then, = and #” have essentially the same
input/output behavior. In particular, if = securely realizes
some ideal functionality G in the F-hybrid model then 7*
securely realizes Z as well, without access to F.

Functionality F2,

F2 . is parameterized by distribution D. It proceeds as fol-
lows, running with a set of parties and an adversary:

1. Chooseavauer & D.
2. When receiving (CRS,sid) from some party send
(CRS,sid, r) to that party.

Figure 1. The CRS functionality




The CRS model. In the UC framework, the CRS model
is formalized as the F..s-hybrid model, where F.,, is the
common reference string ideal functionality, presented in
Figure 1. Here all calls to F.,.; are answered by the same
reference string that was chosen by the functionality accord-
ing to a publicly known distribution.

3. Thekey registration functionality

This section presents and motivates our relaxed key reg-
istration functionality. We also present several alternative
ways to realize it. The idea is to provide a relatively gen-
eral and minimal set-up assumption that can be realized by
a number of quite different and alternative “set-up mecha-
nisms”, and at the same time suffices for realizing general
functionalities. We first present the functionality. Next, we
describe a number of ways to realize it.

The key registration functionality, F,., is presented in
Figure 2. It is parameterized by a (deterministic) function
f:{0,1}* — {0,1}*, that represents a method for com-
puting a public key given a secret (and supposedly random)
key. The functionality allows parties to register their iden-
tities together with an associated “public key”. The “pub-
lic key” to be associated with a party upon registration is
determined as follows. The functionality keeps a (public)
set R of “good public keys”. Upon receiving a registration
request from party P; (which is either corrupted or uncor-
rupted), the functionality first notifies the adversary that a
request was made and gives the adversary the option to set
the registered key to some key p that is already in R. If the
adversary declines to set the registered key, then the func-
tionality determines the key on its own, by choosing a ran-
dom secret » from a given domain (say, {0, 1}* for a se-
curity parameter k) and letting p = f(r). Once the regis-
tered key p is chosen, the functionality records (P;, p) and
returns p to P; and to the adversary. Finally, if p was cho-
sen by the functionality itself then p is added to R. If the
registering party is corrupted, then it can also specify, if it
chooses, an arbitrary “secret key” r and then register with
the value f(r). A retrieval request (made by any party) for
the public key of P; is answered with either an error mes-
sage L or one of the registered public keys of P;, where the
adversary chooses which registered public key, if any, is re-
turned. (That is, the adversary can prevent a party from re-
trieving any of the registered keys of another party.)

Notice that the uncorrupted parties do not obtain any
secret keys associated with their public keys, whereas the
corrupted parties may know the secret keys of their public
keys. Furthermore, Fy,. gives the adversary a fair amount
of freedom in choosing the registered keys. It can set the
keys associated with corrupted parties to be any arbitrary
value (as long as the functionality sees the correspond-
ing private key). The adversary can also cause the keys of

Functionality F/,

f,{r proceeds as follows, given function f and security pa
rameter k, and running with a set of parties and an adver-
sary S. At the fi rst activation a set R of strings is initialized
to be empty.

Registration: When receiving amessage (r egi st er , sid)

from a party P; (which is either corrupted or uncorrupted),
send (r egi st er, sid, P;) toS and receive avalue p’ from
S.Then,ifp’ € Rthenletp « p'. Else, chooser <& {0, 1},
let p + f(r), and add p to R. Finally, record (P;, p) and re-
turn (sid,p) to P; andto S.

Registration by a corrupted party: When receiving a mes-
sage (r egi st er, sid,r) from acorrupted party P;, record
(Ps, f(r)). Inthiscase, f(r) isnot added to R.

Retrieval: When receivingamessage(retri eve, sid, P;)

from party P;, send (retrieve,sid, P;, P;) to S, and
obtain a value p from S. If (P;,p) is recorded then return
( sid, P;,p) to P;. Else, return ( sid, P;, 1) to P;.

Figure 2. The Key Registration functionality

both corrupted and uncorrupted parties to be identical to the
keys of other (either corrupted or uncorrupted) parties. Still,
Frr guarantees two basic properties: (a) the public keys of
good parties are “safe” (in the sense that their secret keys
were chosen at random and kept secret from the adversary),
and (b) the public keys of the corrupted parties are “well-
formed”, in the sense that the functionality has seen the cor-
responding secret keys. We demonstrate that Fy,. can be re-

alized using a variety of mechanisms:

Realizing F, in the F..s-hybrid model. We first demon-
strate that }‘,fr can be easily realized in the F2 -hybrid
model, where D = Dy, is the distribution of f(r) where
r is uniform in {0, 1}*. The protocol is straightforward: On
input either (regi ster,sid) or (retrieve,sid, P;),
party P; sends ( CRS, sid) to F..s and returns the obtained
value. The following proposition is proven in [BCNP04]:

Proposition 1 The above protocol securely realizes f,fT in
the FP -hybrid model.

crs

Realizing F}, given a randomized registration service.
Next, consider a setting where the parties have access to
a registration service where parties can register and obtain
public keys that were chosen at random according to a given
distribution (i.e., the public key is f(r) foranr & {0,1}%).
This is similar to the registration authority needed for a stan-
dard “public-key infrastructure,” except that here (a) the
public keys are chosen by the authority, and (b) the register-
ing party does not obtain the corresponding secret keys. We
let . (for random key registration) denote the ideal func-
tionality that captures this registration service.

We claim that F,. can be realized in this setting via
the same protocol as for realizing Fy, in the F.,.s-hybrid



model:

Proposition 2 The above protocol securely realizes f,{T in
the 4, -hybrid model.

rkr

Realizing F, given a registration service with knowl-
edge. Next, consider an alternative setting where the regis-
tration service lets the registering parties choose their pub-
lic keys on their own, but insists on seeing the correspond-
ing secret keys. This model reduces the trust in the ser-
vice: no longer is it trusted to make truly random choices.
It is only trusted to verify “well-formedness” of the keys.
In particular, the keys of corrupted parties are no longer
guaranteed to be randomly chosen. (This setting is also
very close to the standard “public-key infrastructure” set-
ting.) We let Fy.r, (for key registration with knowledge)
denote the ideal functionality that captures this registra-
tion service. We show how to realize Fy, in this setting.
On input (regi st er,sid), party P; chooses a random
r; & {0,1}*, provides r; to the registration authority, com-
putes p; = f(r;), erases r;, and returns p;.

Proposition 3 The above protocol securely realizes 7, ,{T in
the /., -hybrid model.

Realizing F,- with semi-trusted registration service. The
above two settings assumed that the registration service
is completely trusted to perform its task according to the
specification. Alternatively, we can consider a setting where
there are multiple registration services, where no single ser-
vice is trusted by all the parties. Instead, each party is will-
ing to “fully trust” only one of the services (the one it reg-
istered with), and in addition it is willing to “partially trust”
all other ones. More specifically, the service that the party
registered with is trusted to keep its secret key secret. The
only trust put in other services is that they agree to record
only “well-formed public keys” that were computed based
on some secret key. The keys can be copies of each other,
and the secret keys can be made public. Again, Fy,- can be
realized even in such a setting via essentially the same pro-
tocol.

Realizing Fy, using traditional proofs of knowledge. Fi-
nally, we consider the case where the registration service is
similar to that of Fy,x, except that the parties do not pro-
vide the seed r explicitly to the service. Instead, each reg-
istering party provides f(r), and in addition engages with
the service in a traditional (non-UC) zero-knowledge proof
of knowledge of r. This protocol does not realize F,. in the
plain UC framework. Still, if we assume that there is no net-
work activity during the execution of each zero-knowledge
proof (formally, if we assume that the environment does
not interact with the adversary for the duration of the zero-
knowledge proof with Fy,..), then this protocol does realize
Frr- Such an assumption may be reasonable in some cases.

4. Realizing any well-formed functionality

We show how to realize any well-formed function-
ality in the Fg.-hybrid model. By the following re-
sult from [cLos02] it suffices to realize F,,,com (presented
in Figure 3) in the F,--hybrid model.

Theorem 4 If there exists augmented non-committing en-
cryption, then any well-formed functionality can be realized
in the Fy,com-hybrid model.?

Functionality Frcom

Fmeom Proceeds as follows, running with parties P, Ps, ...
and an adversary S.

1. Upon receiving a value ( Conmi t, sid, cid, P;, P;, x)
from P;, where z € {0, 1}, record the tuple (cid, P;, P;, z)
and send the message ( Recei pt , sid, cid, P;, P;) t0S.0n
a subsequent message ( Recei pt , sid, cid, P;, P;) from S,
send ( Recei pt, sid, cid, P;, P;) to P; and ignore subse-
quent ( Conmi t , sid, cid, P;, P;, ...) values.

2. Upon receiving avalue ( Open, sid, cid, P;, P;) from P;:
If the tuple (cid, P;, P;, z) isrecorded then send the message
(Open, sid, cid, P;, P;, x) to P; and S. Otherwise, do noth-
ing.

Figure 3. The multi-instance commitment func-
tionality. Each commitment instance within the protocol
has a unique commitment identifi er (cid).

Realizing Fpcom- Al known UC commitment
schemes [CF01, cLOS02, DN02] are for the CRS model.
We provide a general technique for adapting all of
these schemes to the Fi.-hybrid model. We demon-
strate this technique for the scheme in [cLOS02]. See
[BCNPO4] for a treatment of all other schemes.

The CLOS scheme. The protocol from [cL0OS02], which is
a variant of the scheme in [cFo1], uses a CRS v = (¢, e),
where ¢ is a commitment key for a statistically hiding trap-
door commitment scheme and e = (e““®, eP"°) is an encryp-
tion key for an encryption scheme of the form E.(m) =
EET.(Ec¢. (m)), where EPT has pseudo-random cipher-
texts (PRC)® and E°°® is CCA secure; Below we call such

2 Anaugmented non-committing encryption scheme is a redlization of
theideal functionality for secure message transmission meeting an ex-
tratechnical requirement. Such aprotocol can be constructed from any
trapdoor permutation family whereit is possible to generate a function
from the family without its trapdoor. Such families exist e.g. under the
DDH or RSA assumptions.

3 In aPRC encryption scheme E dl ciphertexts under an encryption
key e have the same length I, and an encryption C' + E.(m) of a
chosen message m is computationally indistinguishable from a uni-

formly random string C’ & {0, 1}%¢. Such an encryption scheme ex-
ists given any trapdoor predicate with some special structure. For in-
stance, they exist under the DDH or RSA assumptions.



an encryption scheme a CLOS encryption scheme. A com-
mitment to a bit z is of the form (C, Ey, E1), where C' =
commit,(z;7), By = E.(r;s) and By, & {0,1}/Eel;
Here r and s are the random bits used by commit. and E.,
respectively. To open the commitment one sends (z,r, s).
The scheme is binding since an opening to z includes an
opening of C' to z. It is hiding by the hiding property of
commit, and the CCA security of E,.. In addition to being
binding and hiding, a realization of F,,,..m should have the
following two properties: Simulation equivocality: The sim-
ulator should be able to produce equivocal commitments for
which it can open to both 0 and 1. Simulation extractabil-
ity: The simulator should be able to extract the contents of
any openable commitment, even after supplying an adver-
sary with arbitrary many equivocal commitments and their
openings.

Simulation equivocality is achieved using the trapdoor
of commit., which allows to compute (C, 79, r1) such that
commit.(0;79) = C = commit.(1;r1). Specifically,
the simulator computes the “fake commitment” (C, Eq =
E.(ro;80), BE1 = Ee(r1;s1)); This looks like a real com-
mitment by the PRC assumption. To open the commit-
ment to bit = the simulator sends (z, 7, s ). Simulation ex-
tractability is achieved using the decryption key d of E..
When the simulator receives a commitment (C, Ey, E1)
from the adversary it computes ro = Dg4(Fo) and r, =
Dy(Ey). If (C, Ey, Ey) is openable with either ro or rq,
then either C = commit.(0;r¢) or C = commit.(1;r1),
which allows the simulator to determine the bit x. Since
the adversary does not know the trapdoor of commit,,
both possibilities happen simultaneously only with negli-
gible probability.

Two observations allow adopting the above scheme to
the Fp-hybrid model. First of all, each property of the
primitives used to build the UC commitment scheme is in
the interest of either the sender or the receiver, never both.
Second, some of the properties hold even if the keys are
only well-formed, i.e. e is some encryption key and ¢ is
some commitment key. We go over the properties and ob-
serve which parties are interested in which and when they
hold: Computational binding of commit.: Prevents double
openings; In the interest of the receiver; Holds when ¢ is
a random key. Equivocality of commit.: Used to construct
equivocal commitments; In the interest of the sender; Holds
when ¢ is well-formed and the simulator can access the trap-
door. Statistical hiding of commit.: Needed for the over-
all commitment to be hiding; In the interest of the sender;
Holds when c¢ is well-formed. Computational hiding of E.:
Needed for the overall commitment to be computational
hiding; In the interest of the sender; Holds when e is ran-
dom. Decryption of E.: Ensures extractability; In the in-
terest of the receiver; Holds when e is well-formed and the
simulator can access the decryption key. Pseudo-random ci-

phertext of E.: Needed for equivocal commitments to look
like real commitments; In the interest of the sender; Holds
when e is random. We learn that the trust is asymmetric:
The sender is interested in e being random and ¢ being well-
formed, and the receiver is interested in e being well-formed
and ¢ being random. This can be guaranteed by the sender
generating and registering e and the receiver generating and
registering c. The resulting scheme is presented in Figure 4.

Protocol CLOS-KR

CLOS-KR proceeds as follows, running with parties
Pi, Ps,...inthe F/ _-hybrid model, where f(r) = (e, ¢) with
e being an encryption key for a CL OS encryption scheme and
¢ being a key for a statistically hiding trapdoor commitment
scheme.

1. Upon itsinitia activation with session id sid the party
P; inputs (1 egi st er, sid) to F/ , waits for avalue
(sid,p; = (e;, ¢;)) from Fy, and stores p;.

2. Upon receiving an input
(Commi t , sid, cid, P;, P;,z), where z € {0,1},
the party P; inputs (retrieve,sid,P;) to ]-“,fT
and waits for a vaue (sid, Pj,p;) from Fg,. If
p; = L then P; terminates the protocol with com-
mitment id cid. Otherwise, it letsp; = (e;, ¢;), com-
putes C = commit.;(z;7), By = Ee,(r;s) and
E1_, & {0,1}E=!, stores (sid, cid, z, r, s) and sends
(Sid, Cid, C, E(), El) to 13] .

3. Upon receiving a value (sid, cid, C, Eo, E1) from P;,
where cid was not used before, the party P; inputs
(retrieve,sid, P;) to F{ and waits for a value
(sid, P;, p;) from Fy,. If p; = L then P; terminates
the protocol with commitment id cid. Otherwise, it lets
pi = (ei,ci), stores (sid, cid, P;,e;,C, Eo, E1) and
outputs ( Recei pt , sid, cid, P;, P;) .

4. Upon receiving an input ( Open, sid, cid, P;, P;) ,
where a value (sid, cid, z, r, s) is stored, the party P;
sends ( Open, sid, cid, xz,r, s) to P;.

5. Upon receiving for the first time a vaue
(sid,cid,z,7,s) from P;, where a vaue
(cid, sid, P;, e;,C, Ey, Er) is stored and
C = commite;(z;r) and E;, = E(r;s), the
party P; outputs ( Open, sid, cid, P;, Pj, x) .

Figure 4. The UC commitment scheme for the key
registration model

Proposition 5 If there exist CCA secure encryption, PRC
secure encryption and statistically hiding trapdoor commit-
ments, then the above protocol realizes F,com in the Fy,--
hybrid model.



4.1. Keying only the committer

In the above commitment scheme both parties must reg-
ister public keys. Using a tool from [DN02], called a mixed
commitment scheme, we can get a scheme where only the
sender needs to have registered a public key. Furthermore,
we use this type of commitment to realize any two party
functionality even when just one of the two parties has a
registered public key. This property may be useful, for in-
stance, in client-server interactions, where only the server
has a public key. *

A mixed commitment scheme is a commitment scheme
(genE, gen X, commit) with a usual commitment function
commit and two key generators genE and genX. A key
generated as K = genE(r) is called an E-key and r is
called the E-trapdoor. A key generated as K = genX(r)
is called an X-key and r is called the X-trapdoor. When
K is an E-key, commitg is computationally hiding and
Equivocal (given the E-trapdoor). When K is an X-key,
commitg is perfectly binding and eXtractable (given the X-
trapdoor). The term mixed refers to the key indistinguisha-
bility requirement that random keys sampled using genE
and gen X are computationally indistinguishable. The main
motivation for considering mixed commitment schemes is
that the equivocation property of a commitment scheme is
predominantly a property that is solely needed in simula-
tion. A mixed commitment scheme allows to use a per-
fectly binding commitment scheme in the real-world and
then indistinguishably replace it by an equivocal commit-
ment scheme for the sake of simulation and/or analysis. We
demonstrate this technique.

Recall that the receiver picks the commitment key in
the CLOS scheme to guarantee binding and that the com-
mitment scheme was statistically hiding to guarantee that
it is hiding even when the receiver picks the key. If in-
stead we let the sender register also the commitment key
¢, but now as an X-key for a mixed commitment scheme,
then commiit,. is perfectly binding and the receiver is again
guaranteed that commit,. is binding (in fact, now the ob-
tained UC commitment scheme is perfectly binding). To
get back simulation equivocality, the simulator simply picks
the registered key c¢ to be a random E-key instead of a ran-
dom X-key. This is possible as the simulator simulates F,.,
and by the key indistinguishability this change of key space
will go unnoticed by the adversary. After the change of key
space commit. is again a trapdoor commitment scheme,

4 Redizing any functionality can be done as follows: Having a UC
commitment scheme where P; commits to P, alows P; and P»
to redize F2, for the distribution where D is a uniformly random
string, by running a Blum coin-fip protocol. Having redized F 2
the parties can then run the protocol from [CL OS02], which isfor the
FB . -hybrid mode. Details on the coin-tossing protocol can be found

in[CRO3].

and the overall scheme is identical to the original CLOS-
KR scheme. The analysis then follows that of the CLOS
scheme. In [BCNP04] we show how to realize mixed com-
mitment schemes based on PRC encryption, giving us the
following result.

Proposition 6 If there exist both CCA secure encryption
and PRC secure encryption, then there exists a sender-keyed
realization of F,,com in the Fp,.-hybrid model. Further-
more, any two-party functionality can be realized even when
only one of the parties has a registered key.

5. Non-interactive UC zero-knowledge

In this section we show that, as in the CRS model, we
can obtain a non-interactive UC zero-knowledge argument
system in the F,.-hybrid model.> More precisely, we show
how to to realize the multi-session extension of the ideal
zero-knowledge functionality F,, .« (presented in Figure 5)
in the Fy,.-hybrid model.

Functionality FZ_,

FE . proceeds as follows, running with parties Pi, P, ...
and an adversary, given abinary relation R.

1. Upon receiving a vaue (ZK-prover,sid,ssid,
P;, Pj,z,w) from a party P;: If (z,w) € R, then send
(ZK- pr oof , sid, ssid, P;, Pj,z) to P; and the adver-
sary. Otherwise, ignore.

Figure 5. The multi-session zero-knowledge func-
tionality

The main components of our construction are a CCA
secure encryption scheme (with errorless decryption), and
the ZAP system of Dwork and Naor [DN00], which is
a two-round public-coins witness indistinguishable (WI)
proof system for NP. Protocol UC-NIZK (presented in
Figure 6) is our non-interactive UC zero-knowledge pro-
tocol. Roughly speaking, the protocol proceeds as follows:
each party’s public key for the protocol consists of a triple
(e, v, ), where e is a public key for the encryption scheme,
v is the first message of the ZAP system, and z = g(y),
where g is a one-way function and y is a uniformly cho-
sen string. (e is used for the proofs where the party is the
prover, and v, z are used when the party is the verifier.) To
prove that a statement z is in some NP-language L, the
prover first computes two encryptions ¢g, ¢; using the en-
cryption key specified by the first part of its own public key:

5 Asinthe CRS model, we rely on erasures to obtain a protocol that
is secure against adaptive adversaries. Alternatively, without erasures
our protocol (aswell as known non-interactive zero-knowledge proto-
colsin CRS model) are only secure against static adversaries.



Protocol UC-NIZK

UC — NIZK proceeds as follows, running with parties
Pi,..., P, inthe F{ hybrid model.

Key Generation: The function £ is given by f(1*,r) =
(e, v, z), where f splitsr into ro, v, y, and ro is used to gen-
erate a encryption/decryption key pair (e,d) = gen(1¥, 7o)
for a CCA secure encryption scheme (gen, E, D) with error-
less decryption, v is the fi rst message for a ZAP system, and
y is used to compute z = g(y), where g is a one-way func-
tion.

Initialization: Upon its initia activation with session iden-
tifi er sid, party B sends the message (r egi st er, sid)

to F/, and waits to receive back the message (sid,p; =
(ei,vi,v,)) from }',fr. P; then stores p;. Partiesretrieve keys
of other parties as in Figure 4; Below we describe how the
protocol proceeds between P; and P; when both parties suc-
ceed in retrieving the other party’s key (e;,v;, z;) respec-
tively (ei, Vi, Zl)

Prover: On input (ZK- prover,sid, ssid, P;, Pj, z,w)

party P; proceeds as follows:

1. computeco = E, (P;, P}, sid, ssid, w)

2. compute ¢1 = E., (P;, P;, sid, ssid, 0F)

3. compute a ZAP proof 7 for the statement that either
¢p IS an encryption, using e; as encryption key, of the
string (P, P;, sid, ssid, w), wherew isawitness for z
(i.e, (x,w) € R) or ¢1 isan encryption, using e; as en-
cryption key, of the string (P;, Pj, sid, ssid,y) where

zj = g(y). The ZAP proof is computed with respect to
Uj

4. eraseall randomness used to generate (co, c1, ).

5. send ( PROCF, sid, ssid, ¢, co, c1, ™) tO P;.

Verifier: Upon receiving ( PROOF, sid, ssid, x, co, c1, )
from party P;, party P; proceeds asfollows:

1. P; verifi esthat 7 isan accepting ZAP with respect to the
message v; (i.e., the second part of the verifi er’s public
key).

2. If the proof is accepting, P; outputs (ZK-
proof, sid, ssid, P;, Pj, x) .

Figure 6. The Non-Interactive UC Zero-

Knowledge Protocol

cp 1S an encryption of a witness that « € L, ¢; is an encryp-
tion of the string 0%. The prover then uses the ZAP system,
with respect to the verifier message specified by the second
part of verifier’s public key, to prove that either ¢q is an en-
cryption of a witness for z (i.e., cg decrypts to w such that
R(x,w) holds), or ¢; is an encryption of some y € g~1(2)
where z is the third part of the verifier’s public key. (That is,
the prover shows that either it knows a witness to the state-
ment z, or that it knows part of the verifier’s secret key). In
order to obtain security also against adaptive adversaries we
furthermore require that the prover erases all random coins
used to construct the proof. We show:

Theorem 7 Assume the existence of enhanced trapdoor
permutations. Then, there exists a non-interactive protocol
that realizes F£ _, in the F,.-hybrid model with respect to
static adversaries. Furthermore, if secure data erasure is
possible then the protocol is secure also against adaptive
adversaries.

The theorem is proven in [BCNP04]. Here we only sketch
the intuition behind the security of the protocol. Recall that
to complete the proof we need essentially two properties:
simulatability of the verifier’s view, and extractability of the
prover’s input. We sketch how these are demonstrated.

simulation: To simulate a proof, the simulator only needs
to know a string y such that g(y) = z (where g is the
one-way function, and z is the third part of the veri-
fier’s public key). Thus, it is not hard to simulate given
the randomness used to construct (this part of) the veri-
fier’s public key. Note that only the verifier’s secret key
is used in this process. Also, we do not require that the
verifier’s key is random but only that it is well formed.

extraction: To extract a witness, the simulator simply de-
Crypts co using the prover’s secret key. Once again, we
only use the fact that the prover’s key is well formed.

Since both CCA secure encryption schemes, with error-
less decryption, and ZAP systems are known to exist under
the assumption of enhanced trapdoor permutations [DDN0O,
DNo0], we thus obtain the following theorem.

6. Handling failures gracefully

The CRS model is a very clean and useful model. How-
ever, as mentioned above, when the CRS model fails it fails
spectacularly. By this we mean that if the common reference
string is generated by a corrupted authority, then this author-
ity is able to completely break the security of the system,
compromising completely both the secrecy and the integrity
of the system in a way that is completely undetectable by
the honest parties. In contrast, we show that in our model it
is possible to construct protocols that enjoy a more “grace-
ful” security analysis. These protocols will be UC-secure in
the case that our assumptions about the other parties’ pub-
lic keys are satisfied (essentially, in the case that other par-
ties” public keys are well-formed). However, even if these
assumptions are not satisfied, we will still be able to ana-
lyze these protocols and show that they are stand-alone se-
cure as in, say, [coo].6 We note that without some kind of

6 Thisholds under the assumption that we can trust our own public key.
We believe this is a reasonable assumption as any party can choose its
own public key and may even erase the corresponding private key later
to avoid leakage (as honest parties in our protocols do not need to use
their private key).



setup assumptions, it is not possible to obtain UC security,
and thus in some sense this is the best that we can hope for.

The crucial observation for constructing such protocols
is that the commitment scheme in Figure 4 is actually stand-
alone secure. By this we mean that the binding property
only requires the receiver’s public key to be generated at
random (and does not require the sender’s key to be even
well-formed), and the hiding property only requires the
sender’s public key to be safe (i.e., generated at random
and kept secret) and does not require the receiver’s key to
be even well-formed.” Thus this commitment scheme al-
ready enjoys the kind of “graceful” analysis we were look-
ing for. We call such a commitment scheme (i.e., a commit-
ment that is stand-alone secure whenever the honest party’s
key is safe, and in addition is UC secure if the adversary’s
key is well-formed) a graceful commitment scheme.

We use a graceful commitment scheme to construct a
“graceful” protocol for any functionality. The key step is
constructing a “graceful” zero-knowledge argument system
for NP (since then we can implement the “commit-and-
prove” functionality which can be used to implement any
functionality by the results of [cLOS02]). For this, we use
the results of Canetti and Fischlin [CFo1] on how to use
a UC secure commitment to construct a UC secure zero
knowledge protocol.® Thus, if we take a zero-knowledge
protocol, such as the one of Feige and Shamir [Fss9], and
use there our graceful commitment scheme as the underly-
ing commitment scheme, we get a protocol that is at the
same time (@) stand-alone zero-knowledge if the honest
party’s keys random by the standard analysis of the zero-
knowledge protocol and (b) UC-secure zero-knowledge if
in addition the adversary’s key is guaranteed to be well-
formed. Thus, we get a graceful zero-knowledge protocol.
Using such a zero-knowledge protocol, we can follow the
approach of [cL0OS02] to construct a graceful protocol for
realizing any functionality. See more details in [BCNP04].
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7 Therecever aso needsto be able to verify that the key e of the com-
mitter defi nes abinding encryption function E;, and sender should be
able to verify that the key ¢ of the committer defi nes a hiding com-
mitment scheme. Such schemes can be constructed under standard as-
sumptions.

8 [CFO01] proved that if you plug a UC-secure commitment into Blum's
parallel Hamiltonicity protocol then it will be UC zero knowledge.
However, the same analysis hold for many other honest-verifi er zero-
knowledge protocols. Specifi cally, in order to guarantee stand-alone
security we can either use a sequential version of Blum'’s protocol, or
dternatively the constant-round protocol of Feige and Shamir [FS89].
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