
Subexponential Algorithms for Unique Games and Related
problems

Sanjeev Arora∗ Boaz Barak† David Steurer‡

April 8, 2010

Abstract
We give subexponential time approximation algorithms for the unique games and the small set ex-

pansion problems. Specifically, for some absolute constant c, we give:

1. An exp(knε)-time algorithm that, given as input a k-alphabet unique game on n variables that has
an assignment satisfying 1 − εc fraction of its constraints, outputs an assignment satisfying 1 − ε
fraction of the constraints.

2. An exp(nε/δ)-time algorithm that, given as input an n-vertex regular graph that has a set S of δn
vertices with edge expansion at most εc, outputs a set S ′ of at most δn vertices with edge expansion
at most ε.

We also obtain a subexponential algorithm with improved approximation for the Multi-Cut problem,
as well as subexponential algorithms with improved approximations to Max-Cut, Sparsest-Cut and
Vertex Cover on some interesting subclasses of instances.

Khot’s Unique Games Conjecture (UGC) states that it is NP-hard to achieve approximation guaran-
tees such as ours for unique games. While our results stop short of refusing the UGC, they do suggest
that Unique Games is significantly easier than NP-hard problems such as 3SAT,3LIN, Label Cover and
more, that are believed not to have a subexponential algorithm achieving a non-trivial approximation
ratio.

The main component in our algorithms is a new result on graph decomposition that may have other
applications. Namely we show that for every δ > 0 and a regular n-vertex graph G, by changing at most
δ fraction of G’s edges, one can break G into disjoint parts so that the induced graph on each part has
at most nε eigenvalues larger than 1 − η (where ε, η depend polynomially on δ). Our results are based
on combining this decomposition with previous algorithms for unique games on graphs with few large
eigenvalues (Kolla and Tulsiani 2007, Kolla 2010).

1 Introduction

Among the important open questions of computational complexity, Khot’s Unique Games Conjecture (UGC) [Kho02]
is one of the very few that looks like it could “go either way.” The conjecture states that for a certain con-
straint satisfaction problem, called Unique Games, it is NP-hard to distinguish between instances that are

∗Department of Computer Science and Center for Computational Intractability, Princeton University. Supported by NSF Grants
CCF-0832797, 0830673, and 0528414.

†Department of Computer Science and Center for Computational Intractability, Princeton University
boaz@cs.princeton.edu. Supported by NSF grants CNS-0627526, CCF-0426582 and CCF-0832797, and the Packard
and Sloan fellowships.

‡Dept of Computer Science and Center for Computational Intractability, Princeton University. Supported by NSF Grants CCF-
0832797, 0830673, and 0528414.

1

almost satisfiable— at least 1− ε of the constraints can be satisfied— and almost completely unsatisfiable—
at most ε of the constraints can be satisfied. (See Section 5 for a formal definition.)

A sequence of works have shown that this conjecture has several important implications [Kho02, KR08,
KKMO07, MOO05, KV05, CKK+05, Aus07, Rag08, MNRS08, GMR08], in particular showing that for
many important computational problems, the currently known approximation algorithms have optimal ap-
proximation ratios. Perhaps most strikingly, Raghavendra [Rag08] showed that the UGC, if true, implies that
every constraint satisfaction problem (CSP) has an associated sharp approximation threshold τ: for every
ε > 0 one can achieve a τ−ε approximation in polynomial (and in fact even quasilinear [Ste10]) time, but ob-
taining a τ+ε approximation is NP-hard. Thus the UGC certainly has profound implications. But of course,
profound implications by themselves need not be any evidence for truth of the conjecture. The deeper reason
for belief in UGC is that in trying to design algorithms for it using current techniques, such as semi-definite
programs (SDPs), one seems to run into the same bottlenecks as for all the other problems alluded to above,
and indeed there are results showing limitations of SDPs in solving unique games [KV05, RS09, KS09a] .
Moreover, recently it was shown that solving unique games is at least as hard as some other hard-looking
problem— the small set expansion problem [RS10]. Another reason one might believe the Unique Games
problem is hard is that it shares a superficial similarity with the Label Cover problem, which is known to
be NP hard to approximate. Indeed a relation between Label Cover and approximating unique games in a
different parameter regime is known [FR04]. However, our work gives more evidence that the two problems
are in fact quite different.

In this work we give a subexponential algorithm for unique games as well as small set expansion, as
explained in the next two theorems. (Sometimes “subexponential” is meant to refer to exp(no(1)) time,
which we do not obtain when ε is a fixed constant. If we did, that would disprove the UGC under the ETH
assumption explained below.)

Theorem 1.1 (See Theorem 5.1). There is some absolute constant α > 0 and an exp(knε
α
)-time algorithm

that given a (1 − ε)-satisfiable unique game of alphabet size1 k, outputs an assignment satisfying 1 − εα

fraction of the constraints.

Theorem 1.2 (See Theorem 2.1). There is some absolute constant α > 0 and an exp(nε
α
/δ)-time algorithm

that given ε, δ > 0 and a graph that has a set of measure at most δ and edge expansion at most ε, finds a set
of measure at most δ and edge expansion at most εα.

(Our results for small set expansion are slightly better quantitatively; see Theorem 2.1 for more details.)
In fact, our algorithm for the unique games problem is obtained by extending the algorithm for the small set
expansion problem, thus giving more evidence for the connection between these two problems.

What do these results imply for the status of the UGC? In a nutshell, they still don’t rule out the UGC, but
imply that (1) unique-game hardness results cannot be used to establish full exponential hardness of a com-
putational problem regardless of the truth of the UGC, and (2) even if the UGC is true then (assuming 3SAT
has fully exponential complexity) the corresponding reduction from 3SAT to Unique Games would have to
run in n1/ε0.01

time, where ε is the completeness parameter of the unique games instance; in particular the
UGC cannot be proved via a gadget reduction from Label Cover of the type pioneered by Hastad [Has97].

Thus unique games are qualitatively different from many NP-complete problems, which seem to re-
quire fully exponential time, as pointed out by Stearns and Hunt [SHI90] and Impagliazzo, Paturi and
Zane [IPZ01]. The latter paper formulated the Exponential Time Hypothesis (ETH) —there is no exp(o(n))

1The alphabet size of a unique game is the number of symbols that each variable can be assigned. In the context of the UGC
one can think of ε as some arbitrarily small constant, and k as some arbitrarily large constant depending on ε.

2

algorithm for solving n-variable 3SAT —and showed that it implies that many computational problems such
as Clique, k-Colorability,and Vertex Cover require 2Ω(n) time as well. (n here refers not to the input size
but the size of the solution when represented as a string.)

In fact, there are very few problems whose complexity is known to be subexponential but believed not
to be polynomial— two famous examples are Factoring and Graph Isomorphism problems, which can be
solved in time roughly exp(n1/3) [LL93] and exp(

√
n log n) [Luk82] respectively2. Because of this paucity

of counterexamples, researchers’ intuition has been that “natural” problems exhibit a dichotomy —they are
either in P or require fully exponential time (ie have essentially no nontrivial algorithms). For example
the algebraic dichotomy conjecture of Bulatov, Jeavons and Krokhin [BJK00] (see also [KS09b]) says that
under the ETH every constraint satisfaction problem is either in P or requires 2Ω(n) time. Fixed parameter
intractability also tries to formalize the same phenomenon in another way.

Accumulating evidence in recent years suggested that a similar dichotomy might hold for approximation.
To give an example, it is now known (due to efficient-PCP constructions, the last one by Moshkovitz and
Raz [MR08]) that ETH implies that achieving 7/8 + ε-approximation to Max-3SAT requires 2n1−o(1)

time
for every fixed ε > 0, and similar statements are true for Max-3LIN, and Label Cover. Thus it would be
natural to interpret the spate of recent UGC-hardness results, especially Raghavendra’s result for all CSPs,
as suggesting that the same is true for many natural classes of NP-hard optimization problems such as CSPs:
there are no approximation algorithms for these problems that run in subexponential time but achieve a better
approximation ratio than current poly-time algorithms. Our results show that this interpretation would be
incorrect and in fact is inconsistent with the UGC since Unique Games itself— an important example of a
constraint satisfaction problem in Raghavendra’s class— has a subexponential time approximation algorithm
that beats the poly-time algorithms if the UGC is true. Similarly our result also refutes the NP-hardness of
variants of the UGC, such as those considered by Chawla et al [CKK+05], where the completeness parameter
ε is a function tending to 0 with the input length. (Curiously, our subexponential algorithm really depends
on completeness parameter being close to 1; the result of Feige and Reichman [FR04] mentioned above
rules out under the ETH a subexponential approximation algorithm for games with completeness bounded
away from 1.)

While (with the exception of the Multi-Cut problem) our ideas do not yet apply to problems “down-
stream of unique games” (e.g., 0.87-approximation to Max-Cut), we do indicate in Section 6 how to use
them to get better algorithms on subfamilies of interesting instances for these problems.

1.1 Comparison with prior algorithms for unique games

Several works have given algorithms for approximating unique games. Most of these can be broadly divided
into two categories: (1) polynomial-time algorithms giving relaxed notions of approximation (i.e., deteri-
orating as the alphabet size grows) for all instances [Kho02, Tre05, GT06, CMM06a, CMM06b] and (2)
polynomial-time algorithms for certain families of instances such games whose constraint graphs are ran-
dom graphs, graphs with expansion properties, and random geometric graphs [AKK+08, KT07, BHHS10,
AIMS10, Kol10]. An exception is the recent work of Arora, Impagliazzo, Matthews, and Steurer [AIMS10]
that gave an exp(2−Ω(1/ε)n) algorithm for unique games that are 1 − ε satisfiable.

2Using padding one can show NP-hard problems with these property as well. A more interesting example (pointed out to us by
Russell Impagliazzo) is subset sum on n integers each of

√
n bits, which is NP-hard, but has an exp(

√
n) time algorithm. Another

example (pointed out to us by Anupam Gupta) is obtaining a log1.99 n approximation to the group Steiner tree problem. This was
shown to be NP-hard via a quasipolynomial time reduction in [HK03], but to be in exp(no(1)) time in [CP05], hence showing that
the blowup in the reduction size is inherent (see discussion in [CP05, §4.3]).

3

Compared to papers from the first category, our algorithms run in subexponential as opposed to poly-
nomial time, but give an approximation guarantee that is independent of the alphabet size. At the moment
the constant α Theorem 1.1 is about 1/6, and although it could perhaps be optimized further, there are
some obstacles in making it smaller than 1/2, which means that for very small alphabet size our approxi-
mation guarantee will be worse than that of [CMM06a], that gave an algorithm that on input a k-alphabet
(1 − ε)-satisfiable unique game, outputs a solution satisfying 1 − O(

√
ε log k) fraction of the constraints.

1.2 Overview: Threshold rank and graph decompositions

Our basic approach for the unique games algorithm is divide and conquer (similarly to Arora et al [AIMS10]):
Partition the constraint graph of the Unique Games instance into disjoint blocks, throw out all constraints
corresponding to edges that go between blocks, and solve independently within each block. However, the
underlying “divide” step involves a new notion of graph decomposition, which we now explain.

Consider the adjacency matrix of an undirected regular graph G, whose every row/column is scaled to
1. (In other words, a symmetric stochastic matrix.) Our algorithm will use the fact that graphs with only
a few eigenvalues close to 1 are “simple” because exhaustive enumeration in the subspace spanned by the
corresponding eigenvalues will quickly give a good-enough solution, as explained below. Thus “complex”
graphs are those with many eigenvalues close to 1. The core of our result is a new way of partitioning
every graph into parts that are “simple.” This decomposition result seems different from existing notions of
partitions such as Szemeredi’s regularity lemma [Sze76], low-width cut decomposition of matrices [FK99],
low-diameter decompositions [LS93] and padded decompositions [GKL03]. The first two of the above
notions really only apply to dense or pseudo-dense graphs, not all graphs. The latter two apply to all graphs
but involve a “penalty term” of O(log n) that is too expensive in our setting, as explained in the paragraph
after Theorem 1.4.

For τ ∈ [0, 1) let the τ-threshold rank of G, denoted rankτ(G), be the number (with multiplicities) of
eigenvalues λ of G satisfying |λ| > τ. Thus rank0(G) coincides with the usual rank of the matrix G, i.e.,
number of non-zero eigenvalues. We will usually be interested in τ close to 1, say 0.9. The higher the
parameter rankτ(G), the “more complex” G is for us. Unlike many existing notions of “rank” or “complex-
ity”, rankτ(G) is small –actually, 1 —for a random graph, and more generally is 1 for any good expander.
This should not be viewed as a bug in the definition: after all, expander graphs and random graphs are easy
instances for problems such as unique games and small set expansion [AKK+08]. In fact, very recently
Kolla [Kol10], building on [KT07], generalized this result to show an algorithm for unique games that runs
in time exponential in the threshold rank of the corresponding constraint graph (assuming a certain bound
on the `∞ norm of the eigenvectors).3 A key step in our algorithm uses a very simple version of the key step
in [Kol10, KT07], see Section 2.1.

Relating threshold rank and small-set expansion. The basic result underlying our graph decomposition
algorithm is the following inequality that relates the threshold rank and small set expansion:

3Specifically, [KT07] gave an algorithm that finds a satisfying assignment in time exponential in the threshold rank of the
label extended graph of the unique game (see Section 5) and used it to obtain a polynomial time algorithm for unique games on
expanders. [Kol10] showed how one can translate in certain cases bounds on the threshold rank of the constraint graph into bounds
on the threshold rank of the label extended graph, hence allowing to use this algorithm in this more general setting. In this work
we observe a more general, though quantitatively worse, relation between the threshold ranks of the label-extended and constraint
graphs, see Corollary 5.3.

4

Theorem 1.3 (Rank/expansion tradeoff, see Theorem 2.3). If G is an n vertex regular graph in which every
set S of at most s vertices has edge expansion at least 0.1 (i.e., at least 0.1 fraction of S ’s edges go to [n]\S),
then

rank1−ε(G) · s 6 n1+O(ε) .

Furthermore, there is a polynomial-time algorithm that given any graph G will recover a set of size n1+O(ε)/rank1−ε(G)
with edge expansion at most 0.1.

This result can be seen as a generalization of Cheeger’s inequality [Che70, Dod84, AM85, Alo86]. The
usual Cheeger’s inequality would yield a nonexpanding set in the graph if there is even a single eigenvalue
close to 1, but this set might be as large as half the vertices, while we obtain a set that (up to nO(ε) slackness)
of measure inversely proportional to the number of large eigenvalues. Theorem 1.3 directly implies a simple
“win-win” algorithm for the small set expansion problem. Either the (1 − ε)-threshold rank is larger than
ncε for some large constant c, in which case we can find a very small (say of size less than n1−ε) non-
expanding set in polynomial time. Or, in the spirit of [KT07, Kol10], we can do in exp(nO(ε)-time a brute
force enumeration over the span of the eigenvectors with eigenvalues larger than 1−ε, and we are guaranteed
to find if some non-expanding set S exists in the graph then we will recover S (up to a small error) via this
enumeration, see Theorem 2.2.

Threshold-rank decomposition. By applying Theorem 1.3 repeatedly and recursively, we obtain our
decomposition result:

Theorem 1.4 (Threshold-rank decomposition theorem, see Theorem 4.1). There is a constant c and a
polynomial-time algorithm that given an n vertex regular graph G and ε > 0, partitions the vertices of
G to sets A1, . . . , Aq such that the induced4 graph Gi on Ai satisfies rank1−εc(Gi) 6 nε and at most a ε

fraction of G’s edges have their endpoints in different sets of this partition.

Key to this decomposition is the advantage Theorem 1.3 has over Cheeger’s inequality. Since every
application of Cheeger’s Inequality might leave us with half the vertices, one generally needs Ω(log n)
recursion depth to get a partition where each block has, say, size

√
n. This could end up removing all the

edges unless ε = O(1/ log n). In contrast, using Theorem 1.3 (or rather its more precise variant Theorem 2.3)
we can get to such a partition with using a constant (depending on ε) depth of recursion.

Our unique games algorithm is obtained from Theorem 1.4 as follows. Given a unique games instance,
we apply Theorem 1.4 to partition it (after removing a small fraction of the constraints) into disjoint parts
each having small rank. We then look at the label extended graph corresponding to every part. (This is the
graph that contains a “cloud” of k vertices for every variable of a k-alphabet unique game, and there is a
matching between pairs of clouds according to the corresponding permutation, see Section 5.) We use the
previously known observation that a satisfying assignment corresponds to a non-expanding set in the label
extended graph, and combine it with a new observation (Lemma 5.2) relating the threshold rank of the label
extended graph and the corresponding constraint graph. The result then follows by using the enumeration
method over the top eigenspace to recover (up to some small noise) the satisfying assignment in every part.

Proof of the rank/expansion relation. Now we give some intuition behind Theorem 1.3, which underlies
all this. Let λ1, λ2, . . . , λn denote the graph’s eigenvalues. Let us pick τ = 1 − η for a small enough η and
suppose m = rankτ(G). Then the so-called Schatten norm Tr(G2k) =

∑
i6n|λi|

2k is at least m(1 − η)2k. On

4The notion of “induced graph” we use involves “regularizing” the graph via self-loops, see Section 4 for the precise definition.

5

the other hand, Tr(G2k) can also be easily seen to equal
∑

i6n‖Gkei‖
2
2 where ei is the unit vector whose only

nonzero coordinate is the ith. But ‖Gkei‖
2
2 simply expresses the collision probability of a k-step random walk

that starts from i. Then we can use a “local” version of Cheeger’s inequality (in this form due to Dimitriou
and Impagliazzo [DI98]), which shows that if all small sets expand a lot, then the collision probability of
the k-step random walk decays very fast with k. We conclude that if all small sets expand a lot, then the
expression in ‖Gkei‖

2
2 must be small, which yields an upper bound on m(1− η)2k, and hence on the threshold

rank m.
A related bound (in the other direction) connecting a Schatten norm to small-set expansion was shown

by Naor [Nao04], who used the Schatten norm to certify small-set expansion of Abelian Cayley graphs (or
more generally, graphs with `∞ bounded eigenvectors).

1.3 Organization of the paper

The main ideas of this work appear in the simplest form in the subexpontial algorithm for small-set ex-
pansion that is described in Section 2. The main component used is Theorem 2.3, showing that small set
expanders must have low threshold rank. This theorem is proven in Section 3.

Section 4 contains our decomposition theorem, which is used in our algorithm for unique games ap-
pearing in Section 5. We sketch some partial results for other computational problems in Section 6. In
Section 7 we show that hypercontractive graphs, that appear in many of the known integrality gap exam-
ples, have much smaller threshold rank than the bound guaranteed by Theorem 2.3, and use this to show a
quasipolynomial time algorithm for certifying that a graph is hypercontractive.

1.4 Notation

Throughout this paper we restrict our attention to regular undirected graphs only, though we allow self
loops and weighted edges (as long as the sum of weights on edges touching every vertex is the same). In
our context this is without loss of generality, because the computational problems we are interested reduce
easily to the regular case (see Appendix A).5 We consider graphs with vertex set V = [n] = {1..n}, and use G
to denote both the graph and its stochastic walk matrix. We use (i, j) ∼ G to denote the distribution obtained
by choosing a random edge of G (i.e., obtaining (i, j) with probability Gi, j/n). We define the measure

of a subset S ⊆ [n], denoted µ(S), to be |S |/n. For S ,T ⊆ [n] we denote G(S ,T)
de f
= 1

n
∑

i∈S , j∈T Gi, j =

Pr(i, j)∼G[i ∈ S , j ∈ T]. The expansion of a subset S of the vertices of a graph G, denoted ΦG(S), is defined
as G(S , S)/µ(S) = Pr(i, j)∈G[j ∈ S |i ∈ S], where S = [n] \ S . We will often drop the subscript G and use only
Φ(S) when the graph is clear from the context.

For x, y ∈ �n we let 〈x, y〉 = Ei∈[n][xiyi]. We define the corresponding 2-norm and 1-norm as ‖x‖ =
√
〈x, x〉 and ‖x‖1 = Ei∈[n][|xi|]. Note that Φ(S) = 1 − 〈χS ,GχS 〉 where χS is the normalized charac-

teristic vector of S , that is χS (i) =
√

n/|S | if i ∈ S and χS (i) = 0 otherwise. Indeed, 〈χS ,GχS 〉 =

(n/|S |)(1/n)
∑

i∈S
∑

j∈S Gi, j.

We say that f (n) = exp(g(n)) if there is some constant c such that f (n) 6 2c·g(n) for every sufficiently large
n. Throughout this paper, the implicit constants used in O(·) notation are absolute constants, independent of
any other parameters.

5For simplicity, we define the small set expansion problem only for regular graphs, although one can easily generalize the
definition and our results to non-regular graphs, assuming the measure of each vertex is weighted by its degree.

6

2 An algorithm for small set expansion

In this section we give a subexponential algorithm for small set expansion. Specifically we prove the fol-
lowing theorem:

Theorem 2.1 (Subexponential algorithm for small-set expansion). For every β ∈ (0, 1), ε > 0, and δ > 0,
there is an exp

(
nO(ε1−β)) poly(n)-time algorithm that on input a regular graph G with n vertices that has a set

S of at most δn vertices satisfying Φ(S) 6 ε, finds a set S ′ of at most δn vertices satisfying Φ(S) 6 O(εβ/3).

Note that by setting β = O(1/ log(1/ε)) we can get an exp(nO(ε))-time algorithm that given a graph with
a small set of expansion at most ε, finds a small set of expansion at most, say, 0.01.

We prove Theorem 2.1 by combining two methods. First we show that if the input graph has at most m
large eigenvalues then one can find the non expanding set (if it exists) in time exp(m). Then we show that
if a graph has many eigenvalues that are fairly large then it must contain a small set with poor expansion,
and in fact there is an efficient way to find such a set. The algorithm is obtained by applying one of these
methods to the input graph depending on the number of eigenvalues larger than 1 − η (for some suitably
chosen threshold η).

2.1 Enumerating non-expanding sets in low-rank graphs

We start by showing that the search for a non-expanding set in a graph can be greatly speeded up if it has
only few large eigenvalues.

Theorem 2.2 (Eigenspace enumeration). There is an exp(rank1−η(G)) poly(n)-time algorithm that given
ε > 0 and a graph G containing a set S with Φ(S) 6 ε, outputs a sequence of sets, one of which has
symmetric difference at most 8(ε/η)|S | with the set S .

In particular for ε < 0.01 and η = 1/2 the algorithm will output a list of sets containing a set S ′ such
that |S ′| 6 1.1|S | and Φ(S ′) 6 13ε.

Proof. Let δ = µ(S) = |S |/n, and let χS be the normalized indicator vector of S , that is χS (i) = 1/
√
δ if

i ∈ S and χS (i) = 0 otherwise. Let U ⊆ �V be the span of the eigenvectors with eigenvalue greater than
1 − η. The dimension of U is equal to m = rank1−η(G). Suppose χS =

√
1 − γ · u +

√
γ · u⊥, where u ∈ U

and u⊥ is orthogonal to U (and hence u⊥ is in the span of the eigenvectors with eigenvalue at most 1 − η).
Both u and u⊥ are unit vectors. Since Φ(S) 6 ε, we have

ε > 1 − 〈χS ,GχS 〉 = 1 − (1 − γ)〈u,Gu〉 − γ〈u⊥,Gu⊥〉 > γ · η ,

where the last step uses 〈u,Gu〉 6 1 and 〈u⊥,Gu⊥〉 6 1 − η. Hence, ‖χS − u‖2 = γ 6 ε/η. If we enumerate
over a

√
ε/η-net in the unit ball of the m-dimensional subspace U, then we will find a vector v satisfying

‖v − χS ‖
2
2 6 2ε/η. The size of a

√
ε/η-net in U is at most exp(m log(1/ε)). Hence, at most 8δε/η fraction

of the coordinates of v differ from χS by more than 1/(2
√
δ). Let S ′ = S ′(v) be the set defined by setting

i ∈ S ′ if vi > 1/(2
√
δ) and i < S ′ otherwise. Every coordinate i in the symmetric difference between S and

S ′ corresponds to a coordinate in which v and χS differ by at least 1/(2
√
δ) and so the symmetric difference

of S and S ′ has measure at most 8εδ/η. �

This theorem is inspired by a recent result of Kolla [Kol10] (building on [KT07]) who showed an
exp(rank1−ε1/3(G)) -time algorithm for unique games on Cayley graphs (or more generally graphs with

7

`∞-bounded eigenvectors), where G is the constraint graph of the unique games. Interestingly, our anal-
ogous result for small set expansion is both much simpler and stronger (in the sense that it does not require
additional properties of eigenvectors).

It is also instructive to compare Theorem 2.2 with Cheeger’s inequality. The proof is basically a variant
of the “easy direction” of Cheeger’s inequality (showing that if λ2 6 1 − ε then every set S of size at most
n/2 satisfies Φ(S) > ε/2). But the algorithm actually beats the rounding algorithm of the “hard direction”.
While the latter is only able to produce a set S with Φ(S) 6 O(

√
ε) in a graph where λ2 > 1 − ε, the

enumeration algorithm will find a set with Φ(S) 6 O(ε), and the difference only becomes stronger as the set
size is smaller. Of course this is not so surprising as we basically do brute force enumeration. Still, at this
point the algorithm beats the SDPs for small set expansion and unique games, as those basically have the
integrality gap of Cheeger’s inequality. What is perhaps more surprising is that, as we will see next, we can
generally assume rank1−η(G) � n, since graphs violating this condition are “trivial” in some sense.

2.2 Finding small non-expanding sets in high-rank graphs

Our next step is to show that every graph with high threshold-rank contains a small non-expanding vertex
set. Moreover such a set can be found efficiently, since it can be assumed to be a level set of a column in a
power of the matrix 1/2I + 1/2G. (A level set of a vector x ∈ �V is a set of the form {i ∈ V | xi > τ} for some
threshold τ ∈ �.)

Theorem 2.3 (Rank bound for small-set expanders). Let G be a regular graph on n vertices such that
rank1−η(G) > n100η/γ. Then there exists a vertex set S of size at most n1−η/γ that satisfies Φ(S) 6

√
γ.

Moreover, S is a level set of a column of (1
2 · I + 1

2 ·G) j for some j 6 O(log n).

One can think of Theorem 2.3 as a generalization of the “difficult direction” of Cheeger’s Inequality. The
latter says that if rank1−η(G) > 1 then there exists a set S with µ(S) 6 1/2 and Φ(S) 6 O(

√
η). Theorem 2.3

gives the same guarantee, but in addition the measure of the set S is inversely proportional to the threshold
rank (i.e., number of large eigenvalues), assuming this rank is larger than nΩ(η). We note that we have made
no attempt to optimize the constants of this theorem, and in fact do not know if the constant 100 above
cannot be replaced with 1 + o(1) (though such a strong bound, if true, will require a different proof).

We now combine Theorems 2.2 and 2.3 to obtain our subexponential algorithm for small set expansion,
namely Theorem 2.1.

Theorem 2.1 (Subexponential algorithm for small-set expansion, restated). For every β ∈ (0, 1), ε > 0,
and δ > 0, there is an exp

(
nO(ε1−β)) poly(n)-time algorithm that on input a regular graph G with n vertices

that has a set S of at most δn vertices satisfying Φ(S) 6 ε, finds a set S ′ of at most δn vertices satisfying
Φ(S) 6 O(εβ/3).

Proof of Theorem 2.1. Set η = ε1−β/3 and γ = ε2β/3. If rank1−η(G) > n100η/γ, then we can compute in
polynomial time a set of size at most n1−η/γ � δn and expansion at most 10

√
γ = O(εβ/3) by Theorem 2.3.

Otherwise, if rank1−η(G) < n100η/γ, we can compute in time exp
(
nO(η/γ) log(1/ε)

)
= exp

(
nO(ε1−β)) a set with

measure at most (1 + O(ε/η))δ 6 2δ and expansion at most O(ε/η) = O(εβ/3). �

3 Threshold-rank bounds for small-set expanders

In this section we prove Theorem 2.3. As mentioned above, Theorem 2.3 is a very natural analog of
Cheeger’s inequality, roughly saying that if a graph has m eigenvalues larger than 1 − η, then not only

8

can we find a set S of expansion at most O(
√
η) (as guaranteed by Cheeger’s inequality), but in fact we

can guarantee that S ’s measure is roughly 1/m. This suggests the following proof strategy— use linear
combinations of the m eigenvectors to arrive at a 1/m-sparse vector v satisfying 〈v,Gv〉 > 1 − O(η), and
then use the rounding procedure of Cheeger’s inequality to obtain from v a set with the desired property.
Unfortunately, this strategy completely fails— since in our context m = o(n) (in fact m = nO(η)) there is no
reason to expect that there will exist a sparse vector in the subspace spanned by the first m eigenvectors.6

So our proof works in an indirect way, via the trace formula Tr(G) =
∑n

i=1 λi. In particular we know that for
every k, we’ll have Tr(Gk) =

∑n
i=1 λ

k
i > m(1 − η)k, so an upper bound on Tr(Gk) will translate into an upper

bound on m. If G is a stochastic matrix, then Tr(Gk) is equal to the sum over all i ∈ [n], of the collision
probability of the distribution Gk/2

i defined as taking a k/2 step random walk from vertex i. Suppose for
the sake of simplicity that this distribution was uniform over the k/2-radius ball in which case the collision
probability will equal one over the size of the ball. If the graph had expansion at least ε for sets of size at
most δ, we might expect this ball to have size min{δn, (1 + ε)k/2}.7 Thus, we’d expect Tr(Gk) to be at most
n times max{(1 + ε)−k/2, 1/(δn)}, which is roughly the bound we get. (See Theorem 3.1 below, we note that
we do get an ε2 term instead of ε in our bound, though this loss will not make a huge difference for our
applications.)

We now state formally and prove our bound on Tr(Gk). Define the k-Schatten norm S k(M) of a sym-
metric matrix M with eigenvalues λ1, . . . , λn to be S k(M)k = λk

1 + . . . + λk
n. (Note that by the trace formula

S k(M)k = Tr(Mk).) We say a graph G is lazy if G = 1/2 · G′ + 1/2 · I for some regular graph G′. (In other
words, G is lazy if G > 1/2 · I entry-wise.) For technical reasons, we will prove a Schatten norm bound only
for lazy graphs. (This bound will suffice to prove Theorem 2.3 also for non-lazy regular graphs.)

Theorem 3.1 (Schatten norm bound). Let G be a lazy regular graph on n vertices. Suppose every vertex set
S with µ(S) 6 δ satisfies Φ(S) > ε. Then, for all even k > 2, the k-Schatten norm of G satisfies

S k(G)k 6 max
{
n ·

(
1 − ε2/32

)k
, 4
δ

}
.

Moreover, for any graph that does not satisfy the above bound, we can compute in polynomial time a vertex
subset S with µ(S) 6 δ and Φ(S) 6 ε, where S is a level set of a column of G j for some j 6 k.

Before proving Theorem 3.1, lets see how it implies Theorem 2.3

Theorem 2.3 (Rank bound for small-set expanders, restated). Let G be a regular graph on n vertices such
that rank1−η(G) > n100η/γ. Then there exists a vertex set S of size at most n1−η/γ that satisfies Φ(S) 6

√
γ.

Moreover, S is a level set of a column of (1
2 · I + 1

2 ·G) j for some j 6 O(log n).

Proof of Theorem 2.3 from Theorem 3.1. Let G, η, γ be as in the theorem, and let m = rank1−η(G). (Note
that we can assume η < 100γ as otherwise the statement is trivial.) Set G′ = 1/2I + 1/2G to be the “lazy
version” of G and note that (1) for every set S , ΦG′(S) = Φ(S)/2 and (2) since every eigenvalue λ in G
translates to an eigenvalue 1/2 + 1/2λ in G′, m = rank1−η/2(G′). Now set k to be such that (1 − γ/64)k = 1/n
and δ = n−η/γ and apply Theorem 3.1 to G′, k with ε =

√
γ/2. We get that if ΦG′(S) 6

√
γ/2 for every S of

measure at most δ, then
m(1 − η/2)k 6 S k(G′)k 6 4/δ = 4nη/γ .

6We do expect however that a “typical” vector will have roughly m/n of its mass in this subspace, and our proof can be viewed
as using the observation that this will hold for one of the standard basis vectors, which are of course the sparsest vectors possible.

7Note in this discussion we ignore the degree of the graph, and you might think we’d expect the ball to have size (εd)k/2 for
small k, but it turns out our bounds are independent of the degree, and in fact one can think of the degree of an absolute constant
much smaller than 1/ε, in which case the growth does behave more similarly to (1 + ε)k/2.

9

(Since the first term in the max expression is 1.) Now use (1 − η/2) ∼ (1 − γ/64)64η/(2γ) > (1 − γ/64)65η/γ

(in the range we care about) to argue that

m(1 − γ/64)k65η/γ 6 4nη/γ ,

but by our choice of k, we get
mn−65η/γ 6 4nη/γ ,

or (assuming nη/γ � 4)
m 6 n100η/γ . (3.1)

Moreover, if G′ violates (3.1), we can find efficiently a level set S of a column G′ j that will satisfy µ(S) 6 δ
and ΦG′(S) = ΦG(S)/2 6

√
γ/2. �

A trace bound. The proof of Theorem 2.3 actually achieves a somewhat stronger statement. Define the
1 − η trace threshold rank of G, denoted rank∗1−η(G), to be the infimum over k ∈ � of Tr(G2k)/(1 − η)2k.
Clearly rank1−η(G) 6 rank∗1−η(G), since Tr(G2k) > rank1−η(G)(1− η)2k. Because our proof bounds the rank
of G via the trace of the lazy graph 1/2I + 1/2G, it actually achieves the following statement:

Theorem 3.2 (Trace rank bound for small-set expanders). Let G be a regular lazy graph on n vertices such
that rank∗1−η(G) > n100η/γ. Then there exists a vertex set S of size at most n1−η/γ that satisfies Φ(S) 6

√
γ.

Moreover, S is a level set of a column of G j for some j 6 O(log n).

One can also show that the trace rank bound is not too far from the threshold rank, in the range of
parameters of interest in this work:

Lemma 3.3. For every δ, η ∈ (0, 1), rank∗1−δη(G) 6 rank1−η(G)n5δ.

Proof. For every k, one can see by the definition of rank∗ and the formula Tr(G2k) =
∑n

i=1 |λi|
2k that

rank∗1−δη(G)(1 − ηδ)2k 6 Tr(G2k) 6 rank1−η(G) + n(1 − η)2k

plugging in k = log n/η we get that rank∗1−δη(G)n−4δ 6 rank1−η(G) + 1. �

3.1 Proof of Theorem 3.1

In the following, we let G be a fixed lazy graph with vertex set V = [n]. (We use the assumption that G
is lazy only for Lemma B.1). Recall that we identify G with its stochastic adjacency matrix. The proof of
Theorem 3.1 is based on the relation of the following parameter to Schatten norms and the expansion of
small sets,

Λ(δ) def
= max

x∈Ωδ

‖Gx‖
‖x‖

.

Here, the set Ωδ ⊆ �
V is defined as

Ωδ
def
=

{
x ∈ �V | 0 < ‖x‖21 6 δ · ‖x‖

2
}
.

By Cauchy–Schwarz, every vector with support of measure at most δ is contained in Ωδ.
Since the spectral radius of G is at most 1, the parameter Λ(δ) is upper bounded by 1 for all δ > 0. The

following lemma shows that if G is an expander for sets of measure at most δ, then Λ(δ) is bounded away
from 1. (In fact, small-set expansion is equivalent to Λ(δ) being bounded away from 1. However, we only
need one direction of this equivalence for the proof.)

10

Lemma 3.4. Suppose Φ(S) > ε for all sets S of measure at most δ. Then,

Λ(δ/4) 6 1 − ε2/32 .

Moreover, if x ∈ Ωδ/4 is a unit vector such that ‖Gx‖ > 1 − ε2/32, then there exists a level set S of x such
that µ(S) 6 δ and Φ(S) < ε.

The proof of 3.4 combines a few standard techniques (Cheeger’s inequality with Dirichlet boundary
conditions and a truncation argument, e.g. see [GMT06, Chu07, AK09, RST10a]). Also, a variant of
this lemma that is strong enough for our purposes was given by Dimitriou and Impagliazzo [DI98]. For
completeness, we present a self-contained proof in Appendix B.

Next, we obtain a bound on Schatten norms in terms of the parameter Λ(δ). We need the following
simple technical lemma, which almost follows immediately from the definition of Λ(δ).

Lemma 3.5. For every j ∈ �, x ∈ �V , and δ > 0,

‖G jx‖ 6 max
{
Λ(δ) j · ‖x‖ , 1√

δ
· ‖x‖1

}
. (3.2)

Proof. Indeed, suppose that ‖G jx‖ > ‖x‖1/
√
δ. Then, since G is stochastic and hence ‖Gy‖2 6 ‖y‖2 and

‖Gy‖1 6 ‖y‖1 for all y,

‖x‖2 > ‖Gx‖2 > · · · > ‖G j−1x‖2 > ‖G jx‖2 > ‖x‖1/
√
δ > ‖Gx‖1/

√
δ > · · · > ‖G j−1x‖1/

√
δ > ‖G jx‖1/

√
δ .

Therefore, we see that Gix ∈ Ωδ for all i ∈ {0, . . . , j}, which implies that

‖G jx‖ 6 Λ(δ)‖G j−1x‖ 6 Λ(δ)2‖G j−1x‖ 6 . . . 6 Λ(δ) j‖x‖ .Λ

With this lemma, we can prove the following bound on Schatten norms in terms of the parameter Λ(δ).

Lemma 3.6. For every even integer k > 2,

S k(G)k 6 max
{
n · Λ(δ)k, 1

δ

}
.

Proof. Let e1, . . . , en be the normalized standard basis vectors, that is, the j-th coordinate of ei is equal to
√

n
if i = j and equal to 0 otherwise. Note that ‖ei‖ = 1 and ‖ei‖1 = 1/

√
n. Using the identity S k(G)k = Tr(Gk),

we obtain

S k(G)k = Tr(Gk) =

n∑
i=1

〈ei,Gkei〉 =

n∑
i=1

〈Gk/2ei,Gk/2ei〉 =

n∑
i=1

‖Gk/2ei‖
2 6 n ·max

{
Λ(δ)k, 1

nδ

}
,

where the last inequality uses Lemma 3.5. �

Lemmas 3.4 and 3.6 immediately imply Theorem 3.1 by noting that under the condition of the theorem,
Λ(δ/4) > 1 − ε2/32, hence implying that S k(G)k 6 max{n(1 − ε2/32)k, 4/δ}. Moreover, following the proof
we see that if the condition is violated then we can get a set S with |S | 6 δn and Φ(S) 6 ε by looking at a
level set of the vector G jei for some j 6 k and standard basis vector ei.

11

A1

A2 Ai
Ar B

≤ O(ε2|Ai|)

We prove Lemma 4.3 by repeatedly using Lemma 4.2 to remove from the graph sets A1, . . . , Ar that are “somewhat small” (size

6 n1−ε) until the remaining part B has 1− ε5 threshold rank at most n100ε. To count the expansion of the partition we orient all edges

to the right in the figure and charge each edge −→u v crossing the partition to the set Ai containing u. Lemma 4.2 guarantees that the

weight of directed edges from Ai to Ai+1 ∪ · · · ∪ B is at most O(ε2|Ai|). Theorem 4.1 is an immediate implication of Lemma 4.4, and

the latter is proven by recursively applying Lemma 4.3 to each of the sets Ai up to ε−1 log(1/ε) times until the only non-expander

parts remaining are “very small” (size 6 nε). The overall cost of the partition is O(ε2ε−1 log(1/ε)) = O(ε log(1/ε)).

Figure 1: Overview of proof of Theorem 4.1.

4 Low threshold-rank decomposition of graphs

In this section we obtain our main technical tool for extending our small set expansion algorithm to unique
games. This is an algorithm to decompose a graph into parts that have low threshold rank.

We will use the following notation. For a graph G, a partition of the vertices V = V(G) is a function
χ : V → �. We will not care about the numerical values of χ and so identify χ with the family of disjoint
sets {χ−1(i)}i∈Image(χ). The size of the partition χ, denoted by size(χ) is the number of sets/colors it contains.
We define the expansion or cost of the partition, denoted Φ(χ), to be the fraction of edges i, j for which
χ(i) , χ(j). If G is a d-regular graph and U ⊆ V(G), we let G[U] be the induced graph on U that is
“regularized” by adding to every vertex sufficient number of weight half self loops to achieve degree d. Our
decomposition result is the following:

Theorem 4.1 (Low threshold rank decomposition theorem). There is a polynomial time algorithm that on
input a graph G and ε > 0, outputs a partition χ = (A1, . . . , Aq) of V(G) such that Φ(χ) 6 O(ε log(1/ε)) and
for every i ∈ [q],

rank1−ε5(G[Ai]) 6 n100ε .

4.1 Proof of the decomposition theorem

We now turn to proving Theorem 4.1. The proof is obtained by repeated applications of Theorem 2.2 with
appropriately chosen parameters, as sketched in Figure 1, and so some readers may prefer to skip ahead to
Section 5, showing our subexponential algorithms for unique games.

We start with some notation. Throughout the proof we’ll fix the graph G (which we also think of as
a stochastic matrix) on the set V = [n] of vertices. If U ⊆ V , and S ⊆ U, then the relative expansion
of S with respect to U, denoted by ΦU(S), is defined as Pr(i, j)∼G[j ∈ U \ S |i ∈ S]. Note that ΦU(S) is
equal to the expansion of S in the graph G[U]. (Recall that G[U] is regularized by adding self-loops.) If
χ = (S 1, . . . , S q) is a partition of V , then we define the relative expansion of χ with respect to U, denoted as
ΦU(χ), to be

∑q
i=1 ΦU(S i ∩ U). We say that χ refines a partition τ if χ(x) = χ(y) ⇒ τ(x) = τ(y). We define

the relative cost of χ with respect to τ, denoted Φτ(χ) to be the fraction of edges that are cut in χ but not in

12

τ. That is,
Φτ(χ) = 1

n

∑
i, j∈[n]
χ(i),χ(j)
τ(i)=τ(j)

Gi, j .

Note that if τ = (S 1, . . . , S q) then Φτ(χ) =
∑q

i=1 µ(S i)ΦS i(χ). It’s not hard to verify that Φ(χ) 6 Φ(τ)+Φχ(τ)
with equality if χ is a refinement of τ.

The proof will be obtained by a sequence of three lemmas, see Figure 1 for an overview. We start with
the following instantiation of our small set expander algorithm:

Lemma 4.2. Let G be an n vertex graph, and ε > 0. If rank1−ε5(G) 6 n100ε then we can find in polynomial
time a set S ⊆ V(G) with |S | 6 n1−ε and Φ(S) 6 O(ε2).

Proof. Instantiate Theorem 2.3 with γ = ε4 and η = ε5. �

The precise powers of ε in Lemma 4.2 are not important. The main point is that the set S in the
conclusion of the lemma satisfies logn(1/µ(S)) � Φ(S) (which is the case because logn(1/µ(S)) = ε and
φ(S) = O(ε2)).

Next, we apply Lemma 4.2 repeatedly to obtain a partition of the graph into sets that are either somewhat
small, or are small set expanders.

Lemma 4.3. There is a polynomial-time algorithm that given an n vertex graph G and ε > 0, out-
puts a partition χ = (A1, . . . , Ar, B) of V(G), such that Φ(χ) 6 O(ε2), |Ai| 6 n1−ε for all i ∈ [r], and
rank1−ε5(G[B]) 6 n100ε.

Proof. We start with an empty partition χ and will repeatedly add sets to χ until we cover V = V(G).
Suppose we have already obtained the sets A1, . . . , Ai−1. Let Ui = V \ (A1∪· · ·∪Ai−1). We run the algorithm
of Lemma 4.2 on G[Ui]. If it fails to return anything we add the set B = Ui to the partition and halt. (In this
case, Lemma 4.2 guarantees that rank1−ε5(G[B]) 6 n100ε.) Otherwise, the algorithm returns a set Ai ⊆ Ui

with |Ai| 6 |Ui|
1−ε 6 n1−ε and ΦUi(A) 6 O(ε2). We continue in this way until we have exhausted all of V .

Let χ = (A1, . . . , Ar, B) be the partition that we obtained in this way. Note that

Φ(χ) = 2
r∑

i=1

G(Ai, Ai+1 ∪ · · · ∪ Ar ∪ B) = 2
r∑

i=1

G(Ai,Ui \ Ai) .

But since G(Ai,Ui \ Ai) = Φ′U(Ai)µ(Ai) 6 O(ε2µ(Ai)), we can upper bound the cost of χ as desired

Φ(χ) 6 O(ε4
r∑

i=1

µ(Ai)) 6 O(ε2).

(Since
∑r

i=1 µ(Ai) = 1.) �

The idea for the next lemma is to apply Lemma 4.3 recursively until we obtain a partition of the vertices
into sets Ai are very small (|Ai| � nε) and sets Bi that are small-set expanders. To achieve the bound on
the size of the sets, it is enough to recurse up to depth O(log(1/ε)/ε). In each level of the recursion, we
cut at most an O(ε2) fraction of edges. Hence, the total fraction of edges that we cut across all levels is at
most O(ε log(1/ε)). (For this argument, it was important that the algorithm of Lemma 4.2 outputs set with
logn(1/µ(S)) � Φ(S).)

13

Lemma 4.4. There is an algorithm that given an n vertex graph G, and ε > 0, outputs a partition
χ = (A1, . . . , Ar, B1, · · · , Br′) of [n], such that Φ(χ) 6 O(ε log(1/ε)), |Ai| 6 nε for all i ∈ [r], and
rank1−ε5(G[B j]) 6 n100ε all j ∈ [r′].

Proof. We let χ0 be the trivial partition of one set (with Φ(χ0) = 0) and will continually refine the parti-
tion using Lemma 4.3 until we reach the desired form. Now for i = 0, 1, . . . , 10 log(1/ε)/ε we repeat the
following steps. As long as χi does not satisfy the above form, then for every set A of χi that satisfies
rank1−ε5(G[A]) > n100ε > |A|100ε we run Lemma 4.3 to obtain a partition χA of A with ΦA(χA) 6 O(ε2).
We then let χi+1 be the partition obtained by refining every such set A in χi according to χA. Note that we
maintain the invariant that in χi, every set A such that rank1−ε5(G[A]) > n100ε has size at most n(1−ε)i

. Thus,
after 10 log(1/ε)/ε iterations every such set will have size at most nε. At the end we output the final partition
χ = χ10 log(1/ε)/ε. It just remains to bound Φ(χ). To do that it suffices to prove that Φ(χi+1) 6 Φ(χi) + O(ε2),
since this implis Φ(χ) 6 O(ε2 · log(1/ε)/ε) = O(ε log(1/ε)). So we need to prove Φχi(χi+1) 6 O(ε2). But
indeed, if we let A1, . . . , Ar be the sets in χi that χi+1 refines, then one can see that

Φχi(χi+1) =

b∑
j=1

µ(A j)ΦA j(χA j) 6 O(ε2) ,

where the last inequality follows from
∑
µ(A j) 6 1 and the guarantee ΦA(χA j) 6 O(ε2) provided by

Lemma 4.3. �

Lemma 4.4 immediately implies Theorem 4.1 �

Trace rank bound. Note that by using Theorem 3.2 instead of Theorem 2.3, if we assume the original
graph is lazy, then we can get a partition of small trace threshold-rank instead of threshold rank. (One just
needs to note that if G is lazy then G[A] is lazy as well for every subset A of G’s vertices.) Thus our proof
actually yields the following theorem as well:

Theorem 4.5 (Low trace threshold rank decomposition theorem). There is a polynomial time algorithm that
on input a graph G and ε > 0, outputs a partition χ = (A1, . . . , Aq) of V(G) such that Φ(χ) 6 O(ε log(1/ε))
and for every i ∈ [q],

rank∗1−ε5(G[Ai]) 6 n100ε .

5 A subexponential algorithm for unique games

In this section we give a subexponential algorithm for unique games. A unique game of n variables and
alphabet k is an n vertex graph G whose edges are labeled with permutations on the set [k], where the
edge (i, j) labeled with π iff the edge (j, i) is labeled with π−1. An assignment to the game is a string
y = (y1, . . . , yn) ∈ [k]n, and the value of y is the fraction of edges (i, j) for which y j = π(yi), where π is the
label of (i, j). The value of the game G is the maximum value of y over all y ∈ [k]n. Khot’s Unique Games
Conjecture [Kho02] states that for every ε > 0, there is a k, such that it is NP-hard to distinguish between a
game on alphabet k that has value at least 1 − ε, and such a game of value at most ε. We now show that this
problem can be solved in subexponential time:

Theorem 5.1 (Subexponential algorithm for unique games). There is an exp(knO(ε)) poly(n)-time algorithm
that on input a unique game G on n vertices and alphabet size k that has an assignment satisfying 1 − ε6 of
its constraints outputs an assignment satisfying 1 − O(ε log(1/ε)) of the constraints.

14

5.1 Proof of Theorem 5.1.

We now turn to the proof. We assume the unique game constraint graph is d-regular for some d— this is
without loss of generality (see Appendix A). For a unique game G, the label extended graph of G, denoted
Ĝ, is a graph on nk vertices, where for i, j ∈ [n] and a, b ∈ [k] we place an edge between (i, a) and (j, b) iff
there is an edge (i, j) in G labeled with a permutation π such that π(a) = b. That is, every vertex i ∈ V(G)
corresponds to the “cloud” Ci := {(i, 1), . . . , (i, k)} in V(Ĝ). We say that S ⊆ V(Ĝ) is conflict free if S
intersects each cloud in at most one vertex. Note that a conflict free set S in Ĝ corresponds to a partial
assignment f = fS for the game G (i.e., a partial function from V(G) to [k]). We define the value of a partial
assignment f , denoted val(f), to be 2/(nd) times the number of labeled edges (i, j, π) such that both f (i) and
f (j) are defined, and π(f (i)) = f (j).

We say that a unique game is lazy if each vertex has half of its constraints as self loops with the identity
permutation. The following simple lemma will be quite useful for us:

Lemma 5.2. Suppose that G is lazy. Then rank∗1−η(Ĝ) 6 k · rank∗1−η(G).

Proof. Since rank∗1−η(G) = inft{Tr(G2t)/(1 − η)2t}, this follows from the fact that Tr(Ĝt) 6 k Tr(Gt) for all
t. The latter just follows because of the fact that if there is a length t walk in Ĝ from the vertex (i, a) back
to itself then there must be a corresponding length t walk from i back to itself in G (and in fact one where
composing the corresponding permutation yields a permutation that has a as a fixed point). Thus every
length t walk in G corresponds to at most k such walks in Ĝ. �

Combining this with Lemma 3.3 we get the following corollary:

Corollary 5.3. For every δ, η and n vertex constraint graph G on alphabet k, rank1−δη(Ĝ) 6 knηrank1−η(G).

Because of Lemma 5.2, we will find it convenient to use the trace threshold rank partitioning algorithm
of Theorem 4.5. We note that we could have instead used Corollary 5.3 instead, at some quantitative loss to
the parameters. Our algorithm is as follows:

Input: Unique game G on n variables of alphabet k that has value at least 1 − ε6.

Operation: 1. Make G lazy by adding to every vertex self loops accounting to half the weight labeled
with the identity permutation.

2. Run the partition algorithm of Theorem 4.5 to obtain a partition χ = {A1, . . . , Aq} of the graph G
with Φ(χ) 6 O(ε log(1/ε)) such that for every i, rank1−ε5rank∗(Ai) 6 n100ε.

3. Let Â1, . . . , Âq be the corresponding partition of the label-extended graph Ĝ. Note that for all
t ∈ [q], Ĝ[At] = ˆG[At] and hence byLemma 5.2 rank1−ε5(Ĝ[Ai]) 6 rank∗1−ε5(Ĝ[Ai]) 6 kn100ε.

4. For every t = 1 . . . q do the following:

(a) Run the exp(rank1−ε5(Ĝ[At])-time enumeration algorithm of Theorem 2.2 on the graph
Ĝ[Ât] to obtain a sequence of sets St.

(b) For every set S ∈ St, we compute an assignment fS to the vertices in At as follows: For
every i ∈ At, if Ci ∩ S = ∅, then fS assigns an arbitrary label to the vertex i, if |Ci ∩ S | > 0,
then fS assigns one of the labels in C ∩ S to the vertex i. Let ft be the assignment of
maximum value, and assign the variables corresponding to vertices in At according to ft.
(Note that since the sets A1, . . . , Aq are disjoint, every variable will be assigned at exactly
one label.)

15

We now turn to analyze the algorithm. We assume the game has an assignment fopt satisfying 1 − ε6 of
the constraints. Note that fopt still has the same value, and in fact even somewhat better— 1 − ε6/2— after
we make the graph lazy. Let χ = (A1, . . . , At) be the partition obtained by the algorithm in Step 2. Since
Φ(χ) 6 1/2, the assignment fopt satisfies at least 1 − 2(ε6/2) = 1 − ε6 of the constraints that are not cut by χ.
Let µt be the measure of At (also equalling the measure of Ât), and let εt be the fraction of constraints in At

that are violated by fopt. We know that
∑q

t=1 µtεt 6 2ε6.
The following lemma implies that the algorithm will output an assignment satisfying at least 1 − O(ε)

fraction of the constraints:

Lemma 5.4. Every partial assignment ft satisfies all but a 20εt/η fraction of the constraints in At.

Proof. Let S opt be the subset of Ât corresponding to the assignment fopt. Note that |S opt| = |At| and
ΦÂt

(S opt) 6 εt. Thus, the sequence St contains a set S that has symmetric difference with S opt at most
8(εt/η)|At| (Theorem 2.2). Let S ′ be the subset of Ât corresponding to the assignment fS . The construction
of fS (and thus S ′) ensures that the symmetric difference between S ′ and S is at most the symmetric differ-
ence between S and S opt. (In fact, the symmetric difference of S and S ′ is equal to

∑
i∈At ||S ∩Ci|−1|.) Hence,

S ′ has symmetric difference with S opt at most 16(εt/η)|At|. In other words, fS agrees with fopt on all but a
16εt/η fraction of the vertices in At. Thus fS violates at most εt + 16εt/η 6 20εt/η of the constraints in At.
The lemma follows because we choose ft as the best assignment among all assignments fS for S ∈ St. �

Lemma 5.4 implies that among the constraints not cut by χ, the assignment we output satisfies all but a∑
t

µt · 20εt/η = (20/η)
∑

u

µiεtO(ε6/ε5) = O(ε) fraction of constraints.

Since χ cuts at most O(ε log(1/ε)) fraction of the constraints, the correctness of the algorithm follows. One
just has to note that any solution satisfying 1 − γ fraction of the lazy game’s constraints satisfies at least
1 − 2γ fraction of the original game’s constraints. �

6 Algorithmic results for some unique-games hard problems.

Since the unique games problem is reducible to a host of other problems, one would hope that our ideas
might apply to these problems. We show that this does work out for the Multi-Cut problem, shown unique-
games hard by [CKK+05]. For other problems such as Max-Cut, Sparsest-Cut and Vertex-Cover some
obstacles remain. However we are able to use our algorithm to solve interesting instances of these problems
in subexponential time, where by “interesting” we mean the kind of instances that arose in existing integral-
ity gaps, or PCP-based hardness results. The reason is that these instances are highly expanding in subsets
of size o(n), which implies they have low threshold rank.

Very recently, [RST10b] showed that a hypothesis about the approximability of small-set expansion
(studied in [RS10]) implies that several UG-hard problems, e.g. Max-Cut and Sparsest-Cut are hard to
approximate even on small-set expanders. In particular, this hypothesis implies that for every small enough
ε > 0, given a graph G, it is NP-hard to distinguish between the case that the Max-Cut value of G is at least
1 − ε and the case that G’s Max-Cut value is at most 1 −Ω(

√
ε) and ΦG(2−100/ε) > 1/2.

We show that this problem can be solved (even with Max-Cut value 1 − O(ε) in the NO case) in time
exp(nε

c
) for some absolute constant c > 0.

16

6.1 Subexponential algorithm for Multi Cut

In an instance of Multi Cut, we are given a graph G with vertex set V and a set D of pairs of vertices
(demand pairs). A (D-)multicut is a partition χ = {S 1, . . . , S r} of V such that none of the sets S i contains
a demand pair in D. The goal is to find a multicut χ that minimize Φ(χ), the fraction of edges cut by the
partition.

Using the ideas in [SV09], a straight-forward (but somewhat tedious) adaptation of our algorithm for
Unique Games gives the following algorithm for Multi Cut.

Theorem 6.1. There exists a constant d > 1 and an exp(nε) poly(n)-time algorithm that given a multicut
instance with optimal value εd finds a solution with value ε. Here, d is an absolute constant.

The approximation guarantee of the Multi Cut algorithm above is incomparable with the O(log n)-
approximation of Garg, Vazirani, and Yannakakis [GVY04]. For ε � 1/ log n, the O(log n)-approximation
gives better guarantees. If ε > 1/ log n, our algorithm gives the best known guarantees. (If the degrees of
the demand pairs are small, better approximations are possible [SV09].)

An important special case of Unique Games, called Γ-Max-2Lin, reduces to Multi Cut [SV09]. The
reduction in [SV09] has the feature that the blow-up of the instance is linear in the alphabet size of the
Γ-Max-2Lin instance (in contrast to the usual UG-reductions using longcodes).

Combining this reduction with the above theorem, we get an algorithm for Γ-Max-2Lin. In contrast to
Theorem 5.1, the algorithm for Γ-Max-2Lin has a non-trivial running time even for k = n.

Theorem 6.2 (Improved algorithm for Γ-Max-2Lin). There is an exp((kn)O(ε)) poly(n)-time algorithm that
on input a Γ-Max-2Lin instance G on n vertices and alphabet size k that has an assignment satisfying 1− εd

of its constraints outputs an assignment satisfying 1 − O(ε) of the constraints. Here, d > 1 is an absolute
constant.

We give a rough sketch of Theorem 6.1. The details are deferred to the full version.

Proof Sketch for Theorem 6.1. Let η = ε5. We consider two cases. If rank1−η(G) > n100ε, then there
exists a set S with |S | 6 n1−ε and Φ(S) 6 O(ε2) (Lemma 4.2). In this case, we recurse on the subgraphs
G[S] and G[V \ S]. Otherwise, if rank1−η(G) 6 n100ε, we can enumerate all non-expanding subsets in time
exp(n100ε) poly(n). For every such set S , we prune it to a S ′ that doesn’t contain any demand pairs (using the
obvious greedy algorithm). Out of all such pruned sets S ′, we select the set S ∗ that has the small expansion
in G. We can use S ∗ as one of the components of our multicut and recurse on the subgraph G[V \ S ∗]. This
recursive algorithm and its analysis is very similar to Theorem 4.1. An important difference is that the costs
of the sets S ∗ are charged to the cost of the optimal multicut. �

6.2 Max-Cut, Sparsest-Cut and Vertex-Cover on low threshold rank graphs

We now sketch how one can use the eigenspace enumeration method to give improved approximation guar-
antees Max-Cut, Sparsest-Cut and Vertex-Cover in time exponential in the threshold rank. One can then
optimize the relation between expansion and threshold rank, as in Theorem 2.2, to obtain subexponential
algorithms on small set expanders, although we defer these calculations to the final version of this work. We
first record the following variant of the enumeration result (Theorem 2.2):

Theorem 6.3 (Eigenspace enumeration revisited). There is an exp(rank1−η(G)) poly(n)-time algorithm that
given ε > 0 and an n vertex d-regular graph G containing a set S with G(S , S) > 1 − ε, outputs a sequence
of sets, one of which has symmetric difference at most 16(ε/η)|S | with the set S .

17

In particular for ε < 0.01 and η = 1/2 the algorithm will output a list of sets containing a set S ′ such
that |E(S ′, S ′)| > (1 − 17ε)|E|.

Proof sketch. The proof follows in the same way as Theorem 2.2, except that we use a vector with positive
and negative entries instead of the zero/non-zero characteristic vector used there. That is, we define χS (i) =

+1 if i ∈ S and χS (i) = −1 otherwise. Note that 〈χS ,GχS 〉 6 −1 + 2ε. We then use the same argument as
before to show that χS must have large projection to the top eigenspace. �

We now sketch our algorithms for Max-Cut, Sparsest-Cut and Vertex-Cover on graphs with small
rank:

Theorem 6.4. There is an absolute constant c and an algorithm that on input an n vertex regular graph
G such that Max-Cut(G) > 1 − ε, runs in time exp(rank1−η(G)) poly(n) and produces a cut of size at most
1 − cε/η.

Proof sketch. The maximum cut is a set S satisfying G(S , S) > 1−ε, and we will use Theorem 6.3 to obtain
a set S ′ of O(ε/η) symmetric difference from S . �

Theorem 6.5. There is an absolute constant c and an algorithm that on input an n vertex regular graph G
such that with a set S of size in (n/3, 2n/3) such that ΦG(S) 6 ε, runs in time exp(rank1−η(G)) poly(n) and
produces a set S ′ of size in (n/3, 2n/3) satisfying ΦG(S) 6 cε/η.

Proof sketch. This is obtained by just using the enumeration of Theorem 2.2. �

Theorem 6.6. There is an absolute constant c and an algorithm that on input an n vertex regular graph G
with a vertex cover of size k, outputs a vertex cover of size (2 − cη)k in time exp(rank1−η(G)) poly(n).

Proof sketch. Since the graph is regular, we know that k 6 n/2, and so denote k = n(1/2 + ε) for some ε.
Letting S be the vertex cover, this means that G(S , S) > 1 − 2ε, and so we can find in the above time a set
S ′ with symmetric difference at most (32ε/η)|S | from S . This means that after removing S ′ from the graph,
we have a vertex cover of the remaining edges consisting of at most (32ε/η)|S | vertices, and by the simple
greedy algorithm we can find a vertex cover of at most (64ε/η)|S | vertices. This means we can always find a
vertex cover of size min{n, k(1+64ε/η)} or equivalently a factor min{n/k, 1+64ε/η} larger than the optimum
k. Since k = 1/2 + ε one can see that the ε that will maximize this expression is roughly η/64, in which case
we’ll get 2 − O(η) approximation factor. �

7 Threshold rank of hypercontractive graphs

Integrality gap examples for several problems use graphs defined using the noise operator on the unit sphere.
We define the class of hypercontractive graphs that include such graphs, and show that they have low (i.e.,
polylogarithmic) threshold rank. As a corollary we get an algorithm that certifies in quasipolynomial time
that a hypercontractive graph is indeed a small set expander.

A graph G with vertex set V is θ-hypercontractive if

∀x ∈ �v. ‖Gx‖ 6 ‖x‖2−θ ,

where ‖x‖2−θ2−θ = Ei∈V x2−θ
i .

18

Lemma 7.1. If G is θ-hypercontractive, then Λ(δ) < δγ for some γ = Ω(θ), where Λ is the parameter defined
in Section ??schatten:.

Proof. For every vector x ∈ �V ,

‖Gx‖2−θ 6 E
i∈V

x2−θ
i

= E
i∈V

x2(1−θ)
i · xθi

6
(
Ei∈V x2

i
)1−θ
·
(
Ei∈V xi

)1/θ (using Hölder’s Inequality)

= ‖x‖2(1−θ)‖x‖θ1

Thus, for γ = θ/(2 − θ), we have ‖Gx‖ 6 ‖x‖1−γ‖x‖γ1. Every vector x ∈ Ωδ satisfies ‖x‖1 6
√
δ‖x‖. Hence,

for x ∈ Ωδ, we have ‖Gx‖ 6 δγ/2‖x‖, which proves that Λ(δ) 6 δγ/2. �

Lemma 7.2 (Schatten norm bound for hypercontractive graphs). If G is θ-hypercontractive, then for all even
k,

Tr Gk 6 n(1−γ)k
,

where γ = θ/(2 − θ).

Proof. In the proof of the previous lemma, we showed that ‖Gx‖ 6 ‖x‖1−γ‖x‖γ1. Let e1, . . . , en be the
canonical basis of�V . We normalize the vectors so that ‖ei‖1 = 1 and ‖ei‖ =

√
n for all i ∈ V . We can easily

verify that for all j ∈ � and i ∈ V ,

‖G jei‖ 6 ‖ei‖
(1−γ) j

1 = n(1−γ) j/2 .

(Here, we use that ‖G jei‖1 = 1 for all j ∈ N and i ∈ V .) Then, for all even k

Tr Gk = E
i∈V
〈ei,Gkei〉

= E
i∈V
‖Gk/2ei‖

2

6 n(1−γ)k/2
.

�

Lemma 7.3 (Threshold rank for hypercontractive graphs). If G is θ-hypercontractive, then

rank1/2(G) 6 (log n)γ .

Proof. Let m = rank1/2(G). By the previous lemma, we have

m 6 2k Tr Gk 6 2kn(1−γ)k/2
.

If we choose k ≈ 2/γ · log log n, we get that m 6 (log n)γ. �

19

8 Conclusions

The most important open question is of course whether our methods can be extended to yield an exp(no(1))-
time algorithm for unique games, hence refuting the Unique Games Conjecture, and more generally what is
the true complexity of the unique games and small set expansion problems. We note that any quantitative
improvement to the bounds of Theorem 2.3 would translate to an improvement in our algorithm for the
small set expansion problem, and so it might result in refuting the stronger variant of the UGC proposed in
[RS10]. Another open question is whether our techniques can yield subexponential algorithms with better
approximation guarantees for unique-games hard problems such as Vertex-Cover, Max-Cut, Sparsest-Cut
on every instance.

Acknowledgements

We are very grateful to Assaf Naor, who first suggested in an intractability center meeting that the eigenvalue
distribution, and in particular Schatten norms, could be related to small set expansion, and gave us a copy of
the manuscript [Nao04]. We thank Alexandra Kolla for giving us an early copy of the manuscript [Kol10].
The authors also had a number of very fruitful conversations on this topic with several people including
Moritz Hardt, Thomas Holenstein, Russell Impagliazzo, Guy Kindler, William Matthews, Prasad Raghaven-
dra, and Prasad Tetali.

References

[AIMS10] S. Arora, R. Impagliazzo, W. Matthews, and D. Steurer. Improved algorithms for unique games
via divide and conquer. Technical Report ECCC TR10-041, ECCC, 2010.

[AK09] N. Alon and B. Klartag. Economical toric spines via Cheeger’s inequality. J. Topol. Anal.,
1(2):101–111, 2009.

[AKK+08] S. Arora, S. Khot, A. Kolla, D. Steurer, M. Tulsiani, and N. Vishnoi. Unique games on expand-
ing constraints graphs are easy. In Proc. 40th STOC. ACM, 2008.

[Alo86] N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.

[AM85] N. Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs, and superconcentrators.
J. Combin. Theory Ser. B, 38(1):73–88, 1985.

[Aus07] P. Austrin. Towards sharp inapproximability for any 2-CSP. In FOCS, pages 307–317, 2007.

[BHHS10] B. Barak, M. Hardt, T. Holenstein, and D. Steurer. Subsampling mathematical relaxations and
average-case complexity, 2010. Manuscript.

[BJK00] A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints using finite
algebras. SIAM J. Comput, 34(3):720–742, 2005. Prelim version in ICALP ’00.

[Che70] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In Problems in analysis
(Papers dedicated to Salomon Bochner, 1969), pages 195–199. Princeton Univ. Press, 1970.

[Chu07] F. Chung. Random walks and local cuts in graphs. Linear Algebra Appl., 423(1):22–32, 2007.

20

[CKK+05] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar. On the hardness of ap-
proximating multicut and sparsest-cut. Computational Complexity, 15(2):94–114, 2006. Prelim
version in CCC 2005.

[CMM06a] M. Charikar, K. Makarychev, and Y. Makarychev. Near-optimal algorithms for unique games.
In STOC, pages 205–214, 2006.

[CMM06b] E. Chlamtac, K. Makarychev, and Y. Makarychev. How to play unique games using embed-
dings. In Proc. 47th FOCS, pages 687–696. Citeseer, 2006.

[CP05] C. Chekuri and M. Pal. A recursive greedy algorithm for walks in directed graphs. In Proc.
FOCS, pages 245–253, 2005.

[DI98] T. Dimitriou and R. Impagliazzo. Go with the winners for graph bisection. In Proc 9th SODA,
pages 510–520, 1998.

[Dod84] J. Dodziuk. Difference equations, isoperimetric inequality and transience of certain random
walks. Trans. Amer. Math. Soc., 284(2):787–794, 1984.

[FK99] A. M. Frieze and R. Kannan. Quick approximation to matrices and applications. Combinator-
ica, 19(2):175–220, 1999.

[FR04] U. Feige and D. Reichman. On systems of linear equations with two variables per equation.
Proc. of RANDOM-APPROX, pages 117–127, 2004.

[GKL03] A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low-distortion
embeddings. In FOCS, pages 534–543, 2003.

[GMR08] V. Guruswami, R. Manokaran, and P. Raghavendra. Beating the random ordering is hard:
Inapproximability of maximum acyclic subgraph. In FOCS, pages 573–582, 2008.

[GMT06] S. Goel, R. Montenegro, and P. Tetali. Mixing time bounds via the spectral profile. Electron.
J. Probab., 11:no. 1, 1–26 (electronic), 2006.

[GT06] A. Gupta and K. Talwar. Approximating unique games. In Proc. 17th SODA, page 106. ACM,
2006.

[GVY04] N. Garg, V. V. Vazirani, and M. Yannakakis. Multiway cuts in node weighted graphs. J.
Algorithms, 50(1):49–61, 2004.

[Has97] J. Hastad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001. Prelim
version STOC ’97.

[HK03] E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In Proc. STOC, page
594. ACM, 2003.

[IPZ01] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?
Journal of Computer and System Sciences, 63(4):512–530, 2001.

[Kho02] S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of 34th STOC, pages
767–775, New York, 2002. ACM Press.

21

[KKMO07] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for
MAX-CUT and other 2-variable CSPs? SIAM J. Comput., 37(1):319–357, 2007.

[Kol10] A. Kolla. Spectral algorithms for unique games. In Proc. CCC, 2010. To appear.

[KR08] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2 − ε. J. Comput.
Syst. Sci., 74(3):335–349, 2008.

[KS09a] S. Khot and R. Saket. Sdp integrality gaps with local `1-embeddability. In FOCS, pages 565–
574, 2009.

[KS09b] G. Kun and M. Szegedy. A new line of attack on the dichotomy conjecture. In Proceedings of
the 41st annual ACM symposium on Symposium on theory of computing, pages 725–734. ACM
New York, NY, USA, 2009.

[KT07] A. Kolla and M. Tulsiani. Playing random and expanding unique games. Unpublished
manuscript available from A. Kolla’s webpage, to appear in journal version of [AKK+08],
2007.

[KV05] S. Khot and N. K. Vishnoi. The unique games conjecture, integrality gap for cut problems and
embeddability of negative type metrics into l1. In FOCS, pages 53–62, 2005.

[LL93] A. K. Lenstra and H. W. J. Lenstra. The Development of the Number Field Sieve. Springer-
Verlag, 1993.

[LS93] N. Linial and M. E. Saks. Low diameter graph decompositions. Combinatorica, 13(4):441–
454, 1993.

[Luk82] E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time. J.
Comput. Syst. Sci., 25(1):42–65, 1982.

[MNRS08] R. Manokaran, J. Naor, P. Raghavendra, and R. Schwartz. SDP gaps and UGC hardness for
multiway cut, 0-extension, and metric labeling. In STOC, pages 11–20, 2008.

[MOO05] E. Mossel, R. O’Donnell, and K. Oleszkiewicz. Noise stability of functions with low influ-
ences: Invariance and optimality. Annals of Mathematics, 101:101, 2008. Preliminary version
in FOCS ’05.

[MR08] D. Moshkovitz and R. Raz. Two query PCP with sub-constant error. In Proc. 49th FOCS,
pages 314–323, 2008.

[Nao04] A. Naor. On the Banach space valued Azuma inequality and small set isoperimetry in Alon-
Roichman graphs. Unpublished manuscript, 2004.

[PY88] C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes.
JCSS, 43(3):425–440, 1991. Prelim version in STOC 88.

[Rag08] P. Raghavendra. Optimal algorithms and inapproximability results for every csp? In Proc. 40th
STOC, pages 245–254. ACM, 2008.

[RS09] P. Raghavendra and D. Steurer. Integrality gaps for strong sdp relaxations of unique games. In
FOCS, pages 575–585, 2009.

22

[RS10] P. Raghavendra and D. Steurer. Graph expansion and the unique games conjecture, 2010.
Manuscript.

[RST10a] P. Raghavendra, D. Steurer, and P. Tetali. Approximations for the isoperimetric and spectral
profile of graphs and related parameters. In Proc. STOC. ACM, 2010.

[RST10b] P. Raghavendra, D. Steurer, and M. Tulsiani. Reductions between graph expansion problems.
manuscript, 2010.

[SHI90] R. Stearns and H. Hunt III. Power indices and easier hard problems. Math. Syst. Theory,
23(4):209–225, 1990.

[Ste10] D. Steurer. Fast SDP algorithms for constraint satisfaction problems. In SODA, 2010. To
appear.

[SV09] D. Steurer and N. Vishnoi. Connections between unique games and multicut. Technical Report
TR09-125, ECCC, 2009.

[Sze76] E. Szemerédi. Regular partitions of graphs. Problèmes combinatoires et théorie des graphes,
Orsay, 1976.

[Tre05] L. Trevisan. Approximation algorithms for unique games. In FOCS, pages 197–205, 2005.

A Reductions to regular instances

We sketch here a reduction from the problem, for ε < γ, of distinguishing between a 1−e vs 1−γ satisfiable
unique game G to the problem of distinguishing between a 1 − ε/10 vs 1 − γ/10 satisfiable unique game
G′ whose constraint graph is regular (i.e., every vertex is adjacent to the edges with the same total weight).
The proof uses the standard expander-based construction originating from [PY88]. We replace each vertex
v in G of degree d with a “cloud” of d new vertices, each connected to one of v’s original neighbors. We
place an expander graph of some constant degree d0 on the vertices of the clouds, and set the weights
so that now every vertex in the graph has one outside edge, and d0 expander edges into its cloud. We
assume that the expander graph has the property that every set S with µ(S) 6 1/2 satisfies Φ(S) > 0.2. We
then set the weights so that the total weight of the expander edges is 0.9 of the graph, and place equality
constraints on these edges to obtain the game G′. Clearly, a 1−ε satisfying assignment in G corresponds to a
0.9 + 0.1(1− ε) = 1− ε/10 satisfying assignment in G′ that assigns the same value to all vertices in the same
cloud. Moreover, given an assignment y′ satisfying 1 − β fraction of G′ constraints, one can see that if we
transform y′ to y by assigning every cloud according to its most popular value, then we can only improve the
fraction of constraints we satisfy. Indeed, consider a set S of vertices in a cloud that were originally given
a value that was not the most popular one. Thus, µ(S) 6 1/2 and hence Φ(S) > 0.2. This implies that in the
assignment y, S is involved in at least 0.9 · 0.2|S | weight of unsatisfied equality constraints. On the other
hand, in y′ the set S will satisfy all equality constraints and violate at most 0.1|S | of its other constraints.
Summing up over all such S ’s we get that the weight of constraints changed from violated to satisfied when
moving from y to y′ is at least as large than the weight of constraints changed from satisfied to violated. (We
may be counting some constraints twice, but we had a factor of two slackness anyway.) Thus y′ still has at
least 1 − β value in G′, and hence translates into an assignment with 1 − 10β value in G.

23

B Restricted eigenvalues and small-set expansion (Proof of Lemma 3.4)

In this section, we prove Lemma 3.4.

Lemma 3.4 (Restated). Suppose Φ(S) > ε for all sets S of measure at most δ. Then,

Λ(δ/4) 6 1 − ε2/32 .

Moreover, if x ∈ Ωδ/4 is a unit vector such that ‖Gx‖ > 1 − ε2/32, then there exists a level set S of x such
that µ(S) 6 δ and Φ(S) < ε.

To allow for a more systematic proof, we introduce two parameters, Λ′(δ) and Λ′′(δ), which are closely
related to Λ(δ),

Λ′(δ) def
= max

x∈Ωδ

〈x,Gx〉
〈x, x〉

, (B.1)

Λ′′(δ) def
= max

x∈�V

µ(supp x)6δ

〈x,Gx〉
〈x, x〉

. (B.2)

Here, supp x denotes the set of non-zero coordinates of x ∈ �V . We remark that the parameters are ordered
as follows Λ(δ) > Λ′(δ) > Λ′′(δ). We omit the (straightforward) proofs, since we don’t need these relations
in the proof of Lemma 3.4. For lazy graphs, all three parameters will turn out to be equivalent up to small
constant factors. (In fact, all but the next lemma hold also for general graphs.) The last lemma of this section
relates Λ′′(δ) to the expansion of small sets in the graph. The parameter Λ′′(δ) is the spectral profile8 of a
graph (see [GMT06, RST10a]).

Lemma B.1. For every δ > 0,
Λ(δ)2 6 Λ′(δ) .

Proof. Since G is lazy, there exists a graph G′ such that G = 1
2G′ + 1

2 I. Notice that G − G2 = 1
4 I − 1

4 (G′)2

is positive semidefinite. Therefore, 〈x,Gx〉 > 〈x,G2x〉 = ‖Gx‖2 for every vector x ∈ �V . It follows
that Λ′(G) > Λ(G)2. �

Recall that Ωδ contains all δ-sparse vectors. (Here, we say a vector is δ-sparse if its support has measure
at most δ.) The following lemma shows that, in fact, every vector in Ωδ is “close” to a O(δ)-sparse vectors.
The proof uses a straight-forward truncation argument.

Lemma B.2. If Λ′(δ) > 1 − ε, then
Λ′′(4δ) > 1 − 2ε .

Proof. Let x ∈ Ωδ be such that 〈x,Gx〉 > (1 − ε)〈x, x〉. We normalize x so that ‖x‖2 = δ (and therefore
‖x‖1 6 δ, since x ∈ Ωδ). We also may assume that x is non-negative. Consider the vector y with yi =

max {xi − 1/4, 0}. We can verify that y2
i > x2

i −
1/2 · xi and (yi − y j)2 6 (xi − x j)2 for all i, j ∈ V . The first

property implies
‖y‖2 > ‖x‖2 − 1

2‖x‖1 >
δ
2 . (B.3)

The second property implies

‖y‖2 − 〈y,Gy〉 = 1
2

∑
i j

Gi j(yi − y j)2 6 1
2

∑
i j

Gi j(xi − x j)2 = ‖x‖2 − 〈x,Gx〉 6 εδ . (B.4)

8More precisely, the spectral profile usually refers to the quantity 1 − Λ′′(δ).

24

Combining (B.3) and (B.4), we get

〈y,Gy〉
〈y, y〉

>
‖y‖2 − εδ

‖y‖2
= 1 − εδ/‖y‖2 > 1 − 2ε .

On the other hand, the support of y has measure at most 4δ. (The average value of |xi| is δ. Hence, at most a
4δ fraction of the coordinates can have value more than 1/4.) We conclude Λ(4δ) > 1 − 2ε. �

The following relation between Λ′′(δ) and the expansion of small sets in G is a direct consequence of
the proof of Cheeger’s inequality [AM85, Alo86] (see for example [GMT06, Chu07, AK09]).

Lemma B.3. Suppose Λ′′(δ) > 1 − ε. Then, there exists a vertex set S with µ(S) 6 δ and

Φ(S) 6
√

8ε .

Proof. By the definition of Λ′′(δ), there exists a δ-sparse vector such that 〈x,Gx〉 > (1− ε)〈x, x〉. By scaling
and taking absolute values, we may assume that all coordinates of x satisfy 0 6 xi 6 1. We consider
the following distribution over vertex sets S : Sample a random threshold t ∈ [0, 1] and output the set
S t := {i ∈ V | x2

i > t}. This distribution over vertex sets has the following properties:

E
t∈[0,1]

µ(S t) = 〈x, x〉 , (B.5)

E
t∈[0,1]

〈1S t ,G1V\S t〉 = E
i∈V

∑
j

Gi j|x2
i − x2

j | . (B.6)

By Cauchy–Schwarz, we can upper bound the latter expectation as follows

E
i∈V

∑
j

Gi j|x2
i − x2

j | 6
(

E
i∈V

∑
j
Gi j(xi − x j)2

)1/2
·
(

E
i∈V

∑
j
Gi j(xi + x j)2

)1/2

=
(
2〈x, x〉 − 2〈x,Gx〉

)1/2
·
(
2〈x, x〉 + 2〈x,Gx〉

)1/2

6 2
√

2
(
〈x, x〉 − 〈x,Gx〉

)1/2
· 〈x, x〉1/2 6 2

√
2 ·
√
ε · 〈x, x〉 .

It follows that there exists a threshold t∗ such that

Φ(S t∗) =
〈1S t∗ ,G1V\S t∗ 〉

µ(S t)
6

Et∈[0,1]〈1S t ,G1V\S t〉

Et∈[0,1] µ(S t)
6 2
√

2 ·
√
ε .

On the other hand, every set S t is a subset of the support of x and thus µ(S t∗) 6 δ as desired. �

We can prove Lemma 3.4 by combining the previous lemmas: Suppose that Φ(S) > ε for all S with
µ(S) 6 δ. Then, we have Λ′′(δ) 6 1 − ε2/8 (Lemma B.3), Λ′(δ/4) 6 1 − ε2/16 (Lemma B.2) and so
Λ(δ/3) 6

√
1 − ε2/16 6 1 − ε2/32 (Lemma B.1). Moreover, following the proof of these lemmas, we see

that they allow us to obtain from a vector x ∈ Ωδ/4 satisfying ‖Gx‖2 > (1 − ε2/32)‖x‖2 a set S of measure
at most δ satisfying Φ(S) 6 ε, and moreover the set S is obtained as a level set of the vector y where
yi = max{xi − 1/4, 0}, or equivalently, a level set of x.

25

