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Abstract

We show a connection between the semidefinite relaxation
of unique games and their behavior under parallel repetition.
Specifically, denoting by val(G) the value of a two-prover
unique game G, and by sdpval(G) the value of a natural
semidefinite program to approximate val(G), we prove that
for every ` ∈ N, if sdpval(G) > 1 − δ, then val(G`) >
1 −
√

s`δ . Here, G` denotes the `-fold parallel repetition of
G, and s = O(log(k/δ)), where k denotes the alphabet size of
the game. For the special case where G is an XOR game (i.e.,
k = 2), we obtain the same bound but with s as an absolute
constant. Our bounds on s are optimal up to a factor of
O(log(1/δ)).

For games with a significant gap between the quantities
val(G) and sdpval(G), our result implies that val(G`) may
be much larger than val(G)`, giving a counterexample to
the strong parallel repetition conjecture. In a recent break-
through, Raz (FOCS ’08) has shown such an example using
the max-cut game on odd cycles. Our results are based on a
generalization of his techniques.
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1. Introduction

In a two-prover game, a referee interacts with two provers,
whose joint goal is to maximize the probability that the
referee outputs “accept”. The provers may decide in advance
on an arbitrary strategy, and they may use shared randomness,
but they cannot communicate with one another during the
interaction, which proceeds as follows:

1. The referee samples a pair of queries (u, v) from a dis-
tribution G specified by the game.

2. The referee sends u to the first prover, and obtains an
answer i, where i ∈ [k] for some integer k that is called
the alphabet size of the game.

3. The referee sends v to the second prover and obtains an
answer j ∈ [k].

4. The referee applies a predicate specified by the game
to (u, v, i, j) and decides accordingly whether to accept
or to reject.

The game is called unique if the predicate consists of
checking whether j = πuv(i) where πuv is a permutation of
[k]. A unique game with alphabet size 2 is called an XOR
game. The value of the game G, denoted by val(G), is the
maximum probability of success that the provers can achieve
(the provers succeed if the referee accepts their answers).

Two-prover games have turned out to be useful in several
contexts, including hardness of approximation and quan-
tum mechanics (see [12, 3, 8]). In many of these appli-
cations, it is important to understand how the value of
the game decreases under parallel repetition. For ` ∈ N,
the `-fold parallel repetition of G, denoted by G`, is
the game in which the referee samples ` pairs of ques-
tions (u1, v1), . . . , (u`, v`) independently from G, sending
(u1, . . . , u`) to the first prover and (v1, . . . , v`) to the sec-
ond prover. The provers then respond with (i1, . . . , i`) and
( j1, . . . , j`), respectively. The referee accepts if and only if
each of the tuples (u1, v1, i1, j1), . . . , (u`, v`, i`, j`) is accept-
able.

1

mailto:boaz@cs.princeton.edu
mailto:mhardt@cs.princeton.edu
mailto:arao@ias.edu


Clearly the two provers for G` can run the optimal strat-
egy for the one-shot game in each instance independently,
and thus val(G`) > val(G)`. Understanding the true value
of val(G`) is a fundamental question. The first dramatic
progress was made by Raz [24] who proved that for every
game G of alphabet size k with val(G) = 1 − ε,

val(G`) 6 (1 − εc)Ω(`/s) , (1)

where here c = 32 and s = log k. Raz’s argument was subse-
quently simplified by Holenstein [13], who also improved
the bound (1) to get c = 3. This was followed by a work
of Rao [23] showing that in the case of projection games
(which are a generalization of unique games), the bound can
be improved to c = 2 and s = 1.

It remained open whether the bound (1) could be further
improved to yield c = 1, and the conjecture that this holds is
known as the strong parallel repetition conjecture. As shown
by Feige et al. [9], this conjecture would have had interesting
applications to hardness of approximation results; moreover
some of these applications would hold even if the conjecture
was only true for the special case of unique games.

In a recent breakthrough, Raz [25] disproved the conjec-
ture by giving an example of a game G of value 1 − ε for
which val(G`) > 1 − O(

√
` ε), which can be seen to imply

that for ` > 1/ε2, val(G`) > (1 − ε2)O(`). In addition, Raz’s
game is an XOR game (and a very simple one at that—the
max-cut game on an odd cycle, see Section 2), and hence
Raz disproved the strong parallel repetition conjecture even
for this case. In this paper, we generalize Raz’s results and
techniques to show that a wide class of unique games yields
such a counterexample. In fact, we determine asymptotically
the value of the repeated version of any unique game, up to
logarithmic factors in the exponent.

Semidefinite relaxation of games. While computing (or
even approximating) the value of a two-prover game is NP-
hard in general, Feige and Lovász [10] showed a non-trivial
upper bound on this value by an efficiently computable pa-
rameter using semidefinite programming (SDP). For every
game G, the problem of computing val(G) (i.e., maximizing
the acceptance probability) can be formalized as a quadratic
programming problem, and [10] studied a natural semidef-
inite relaxation of this program (see Figure 1).1 Letting
sdpval(G) be the optimum value of this program, it always
holds that sdpval(G) > val(G). Using duality it can be
shown sdpval(G`) = sdpval(G)` [10] (see also [21]). Hence,
games with val(G) = sdpval(G) have perfect parallel repeti-
tion, val(G`) = val(G)`. However, there are known examples
with a large gap between val(G) and sdpval(G) and for such
games the value of G` was not known. Our results imply that

1The SDP of [10] had some additional constraints above those of the
SDP of Figure 1, but for our purposes they are still essentially equivalent.
For details see the full version of the paper.

as ` grows, the value of G` tends not to val(G)` but rather to
sdpval(G)`. This has strong negative consequences for [9]’s
intended application of using strong parallel repetition to
show hardness of approximation, because for such applica-
tions the interesting games are those where val(G) is hard to
approximate and hence is far from sdpval(G). We show that
in all these cases strong parallel repetition fails to hold. (In
fact, our results combined with [10] imply that the unique
games where strong parallel repetition fails are exactly those
with a large gap between val(G) and sdpval(G).)

1.1. Our Results

Our main result is the following:

Theorem 1.1. For every ` ∈ N and every unique game G
with sdpval(G) > 1 − δ and alphabet size k,

val(G`) > 1 − O(
√
`δ log(k/δ)) .

For the special case of XOR games, we can prove a
stronger bound that avoids the logarithmic factor.

Theorem 1.2. For every ` ∈ N and every XOR game G with
sdpval(G) > 1 − δ, we have val(G`) > 1 − 4

√
`δ .

When the number of repetitions ` tends to infinity,
we obtain the following stronger bound. Here we use
val(G) to denote the asymptotic value of G, defined as
lim`→∞ (val(G`))1/`.

Theorem 1.3. For every XOR game G with sdpval(G) >
1 − δ, we have val(G) > 1 − 2δ .

The proofs of Theorem 1.1 and Theorem 1.2 are presented
in Section 4.4. For details about Theorem 1.3, see the full
version of the paper.

For every ` and every m that divides `, two provers
playing the game G` can always achieve acceptance prob-
ability at least val(Gm)`/m by using the optimal strategy
on each block of m repetitions independently. Combining
this observation with Feige and Lovász’s [10] result that
val(G`) 6 sdpval(G)`, we obtain the following corollary to
Theorems 1.1 and 1.2:

Corollary 1.4. For every unique two-prover game G with
sdpval(G) = 1 − δ and for every ` > 1/δ,

val(G`) = (1 − δ)Θ̃(`) , (2)

where the Θ̃ notation hides factors logarithmic in 1/δ and the
alphabet size of G. Moreover, if G is an XOR game then we
can replace the right-hand side of (2) with (1 − δ)Θ(`).

The dependence on log k in our bound is inherent, as can
be seen by combining the Khot–Vishnoi [17] integrality gap
example with Rao’s parallel repetition theorem for unique



games [23]: the results in [17] and [16] allow to construct
a unique game G for which sdpval(G) = 1 − δ but val(G) 6
1 − O(

√
δ log k) (for details of this construction, see the full

version of the paper); Rao’s parallel repetition theorem [23]
implies that for this game val(G`) 6 (1 − δ log k)Ω(`) = (1 −
δ)Ω(` log k). Hence, the dependence on log k in Theorem 1.1
is optimal. In contrast, we conjecture that the dependence
on log(1/δ) in Theorem 1.1 is not inherent and is an artifact
of our specific construction. Indeed, for the case of unique
games with linear constraints we can remove the dependence
on log(1/δ), albeit at the cost of a worse dependence on k (for
details, see Section 4.3 and the full version of the paper).

Previous rounding algorithms. It is instructive to com-
pare our results with the best known rounding algorithm for
unique games in this parameter regime, namely the CMM al-
gorithm of Charikar, Makarychev and Makarychev [5]. That
algorithm shows that if sdpval(G) > 1 − δ then val(G) >
1 − O(

√
δ log k), where k is G’s alphabet size. Since the al-

phabet size of G` is k` and sdpval(G`) = sdpval(G)` ∼ 1−`δ
in the range where this bound is non-trivial, the CMM algo-
rithm on G` simply shows that

val(G`) > 1 − O(
√
`δ` log k) = 1 − O(`

√
δ log k) . (3)

Hence the CMM algorithm does not give any better guar-
antee on a repeated game than can be given by applying
the algorithm on each coordinate separately (which is not
surprising, as otherwise they would have already refuted
the strong parallel repetition conjecture). In contrast, our
Theorem 1.1 gives a bound of 1 − O(

√
`δ(log k + log(1/δ))

which could be significantly better (i.e., closer to 1) than the
right-hand side of (3) if log(1/δ) � ` (typically we think of
` ∼ 1/δ in which case log(1/δ) ∼ log `).

Games with entanglement. There are several known ex-
amples of games (often unique) in which provers who
share quantum entanglement can achieve success probability
higher than that achievable by provers without entanglement.
Such games are used in the context of quantum information
theory as experiments that validate some of the predictions of
quantum mechanics. Kempe, Regev, and Toner [14] recently
showed that the success probability achievable by entangled
provers in unique games can be closely approximated by an
SDP. Their proof involves a rounding strategy that produces
strategies for provers with entanglement. Since it is known
that the value achievable by entangled provers is always
upper bounded by sdpval(G), our results show that as the
number of repetitions ` grows, the `th root of the success
probability that classical provers can achieve approaches (up
to logarithmic factors) the `th root of the success probability
that quantum provers can achieve. Thus to a certain extent
the gap between quantum and classical provers in unique
games can “shrink” with the number of repetitions.

Bounds for particular games. Our methods can be used
to derive improved lower bounds on the amortized value
of particular games. An especially interesting example is
the XOR game known as the CHSH game, introduced by
Clauser et al. [8] in 1969. In this game the referee sends a
uniform and independent bit to each prover, and each prover
responds with a value from {−1, 1}. The constraint is an
inequality constraint if and only if both questions are 1. By
always answering 1, the provers can win with probability 3/4,
and it is easy to see that this is the best possible strategy. It
is well-known that the SDP value of this game equals 1/2 +
1/
√

8 ≈ 0.8535. It is somewhat surprising that the asymptotic
value val(CHSH) is not known. Aaronson pointed out that
this value is at least

√
10/4 ≈ 0.7906 by considering CHSH2

(see [1, 2]). In the full version of this paper, we show that this
asymptotic value is at least cos(π/5) = 1/4(1 +

√
5) ≈ 0.809.

2. Techniques

Our techniques are a natural generalization of Raz’s
work [25], and so it is instructive to start with a high level
overview of his approach. Raz’s counterexample used the
following simple XOR game. In the max-cut game on a
graph G the referee selects a random edge {u, v} of G, sets
x = u, then with probability 1/2 sets y = u and with probabil-
ity 1/2 sets y = v. The referee sends x, y to the provers and
receives two bits a, b from them respectively. If x = y then it
accepts if a = b, and if x , y then it accepts if a , b. The
game is called the max-cut game since (as can be easily seen)
if the maximum cut in G cuts a 1 − ε fraction of the edges,
then the value of the game is 1 − ε/2. In particular, if G is
the n vertex cycle for some odd n, then the value of the cor-
responding game (which we denote also by G) is 1 − 1/(2n).
Raz achieved his counterexample by showing that in this
case, for every ` the value of G` is at least 1 − O(

√
`/n).

Interestingly, a central tool used by Raz is a correlated
sampling lemma that Holenstein [13] used to prove the par-
allel repetition theorem (for general games and with c = 3).
We will give the formal statement of the correlated sampling
lemma below (Lemma 4.1) but roughly speaking, it says that
if the two provers are given a pair of distributions D,D′ with
statistical distance at most ε, then even without communicat-
ing, each prover can sample a random element according to
his distribution such that with probability 1−2ε both provers
output the same element.

Raz used the correlated sampling lemma in the follow-
ing way. He defined for every vertex u in the odd cycle a
distribution Du over cuts in the graph, such that the probabil-
ity that a cut selected from Du does not cut one of the two
edges touching u is very small (i.e., O(1/n2)). The provers’
strategy on input u is to sample a cut (S ,T ) according to Du

and output either 1 or 0 according to whether or not u ∈ S .
Now if it happened to be the case that the cut sampled by



the first prover on input u is the same cut as the one sam-
pled by the second prover on input v, it would mean that
if u = v then they answer the same value and if (u, v) is an
edge then with high probability they answer a different value.
Using the correlated sampling lemma, one can ensure that
as long as the statistical distance ∆(Du,Dv) of Du and Dv

is at most ε for every neighboring u, v in the graph, Raz’s
strategy will achieve success probability 1 − O(ε) (we are
neglecting here the small probability that the cut misses the
edge (u, v)). It can then be shown that the question of the
value of the game under parallel repetition reduces to the
question of the distance of many independent samples from
these distributions.

Hellinger distance and independent samples. For two
distributions D1,D2 of statistical distance ε, the statistical
distance of D`

1 and D`
2 (where this denotes concatenating `

independent samples) depends quite a bit on the shape of the
underlying distributions D1 and D2. For example, if D1 is
constantly 1 and D2 is the biased coin with Pr[D2 = 1] =

1 − ε, then ∆(D1,D2) = ε and ∆(D`
1,D

`
2) = 1 − (1 − ε)` ≈ `ε

for small `. On the other hand, if D1 and D2 are coins such
that Pr[D1 = 1] = 1/2 + ε/2 and Pr[D2 = 1] = 1/2 − ε/2 then
∆(D1,D2) is also equal to ε, but ∆(D`

1,D
`
2) = O(

√
` ε).2

Raz uses in his paper a specific example of distributions D1
and D2 (that could be used for his provers’ strategy) such
that ∆(D1,D2) = Θ(1/n) but ∆(D`

1,D
`
2) = O(

√
`/n). In this

paper, we note that the behavior of the statistical distance of
product of distributions is determined by a different distance
measure called the Hellinger distance (see Section 3). This
distance measure has a geometric interpretation, which we
use to relate it to the vector solution of the semidefinite
program.

More concretely, we use Raz’s approach in the context
of rounding algorithms for unique games. Such algorithms
transform a solution to the semidefinite program into a valid
strategy for the original game. The rounding algorithms
we use involve the provers selecting a random high dimen-
sional vector for every input they receive from the verifier.3

Specifically, we will define for every input u a distribution
Du on vectors such that if the two provers on input of u
and v sample from the distributions Du and Dv using the
correlated sampling lemma, then the result is very likely to
satisfy the predicate of the referee. The success probability
of the provers depends crucially on the statistical distance
between the distributions Du and Dv. But in order to bound

2The best distinguisher between D`
1 and D`

2 will simply see whether
the sum of the ` samples is larger than `/2. The difference in expectation
between these two cases is ε`, which is equal to Θ(ε`/

√
`) = Θ(ε

√
`)

standard deviations.
3We note that this is in contrast to standard rounding algorithms for

semidefinite programs that typically select some global vectors to use in
all cases; our case is different since the distribution of vectors we choose
depends on the input query (i.e., vertex in the case of games on graphs).

the statistical distance we will actually derive a bound on the
Hellinger distance between the two distributions. This has
the advantage that the bound carries over nicely to the paral-
lel repeated game using simple properties of the Hellinger
distance. We then use the quadratic relation between the
Hellinger distance and the statistical distance to obtain a
two-prover strategy for the repeated game. Finally, we show
how solutions to the semidefinite programming relaxation
give rise to distributions with small Hellinger distance and
hence a good two-prover strategy for the repeated game. Of
course this high level description is glossing over some very
important details, (including the choice of distributions and
rounding algorithms) and these are covered in the following
sections.

3. Preliminaries

We use boldface to denote vectors. We will often use
collections of vectors that are indexed by elements of some
setV. In this case, we write u for the vector indexed by the
element u ∈ V.

Statistical distance. Let X and Y be two probability dis-
tributions over a domain Ω (e.g., [0, 1] or Rd). Assume X
and Y have density functions with respect to some measure
µ (e.g., the Lebesgue measure), and let f and g denote these
density functions.4 We define their statistical distance (also
known as total variation distance) by

∆(X,Y) def
= 1

2

∫
Ω

| f − g| dµ .

Notice that for any X and Y , ∆(X,Y) ∈ [0, 1].

Hellinger distance. For X and Y as above, one defines
their Hellinger distance H(X,Y) as the square root of

H2(X,Y) def
= 1

2

∫
Ω

( √
f −
√
g
)2

dµ = 1 −
∫

Ω

√
fg dµ .

In other words, the Hellinger distance is the Euclidean dis-
tance between the unit vectors obtained from the density
functions by taking the square root. We will mostly work
with the square of the Hellinger distance, H2(X,Y). Notice
that for any X and Y , H2(X,Y) ∈ [0, 1].

We will use the following known facts about the Hellinger
distance. The first lemma relates the Hellinger distance to
the total variation distance. In the second lemma, we see
how the Hellinger distance of product distributions behaves.

4In more precise terms, we require X and Y to be absolutely continuous
with respect to µ, and we let f and g be their Radon-Nikodym derivatives
with respect to µ.



Maximize E
(u,v,π)∼G

∑
i∈[k]〈ui, uπ(i)〉 (4)

Subject to
∑

i∈[k]‖ui‖
2
2 = 1 (u ∈ V) (5)

〈ui,u j〉 = 0 (u ∈ V, i, j ∈ [k]) (6)

Figure 1. A semidefinite programming formulation of a
unique game G. The variables are vectors ui for every query
u and every i ∈ [k]. Notice that the objective function can be
equivalently written as 1 − 1

2 E(u,v,π)∼G
∑

i∈[k]‖ui − uπ(i)‖
2
2.

Lemma 3.1 ([20, 22]). For any two distributions X and Y,

H2(X,Y) 6 ∆(X,Y) 6
√

H2(X,Y)(2 − H2(X,Y))

6
√

2 H(X,Y) .

Lemma 3.2. Let {X1, . . . , X`} and {Y1, . . . ,Y`} be two fami-
lies of distributions. Then,

H2(X1 ⊗ · · · ⊗ X`,Y1 ⊗ · · · ⊗ Y`)

= 1 −
∏̀
i=1

(1 − H2(Xi,Yi)) 6
∑̀
i=1

H2(Xi,Yi) .

Here, X1⊗· · ·⊗X` denotes the product of the distributions
X1, . . . , X`, i.e., the distribution obtained by taking indepen-
dent samples of X1, . . . , X`.

Note that as a corollary of these two lemmas we ob-
tain that for any two distributions D1 and D2, ∆(D`

1,D
`
2) =

O(
√
`H(D1,D2)).

The Hellinger distance defines a metric on distributions.

Lemma 3.3. For any three distributions X, Y, and Z,

H(X,Y) 6 H(X,Z) + H(Z,Y) .

Finally, we state a useful lemma about the Hellinger dis-
tance between convex combinations.

Lemma 3.4. Let X be a convex combination of the distribu-
tions {X1, . . . , X`} with coefficients αi and let Y be a convex
combination of {Y1, . . . ,Y`} with coefficients βi. Then,

H2(X,Y) 6
∑

i
√
αiβi H2(Xi,Yi) + H2(α, β).

We omit the (simple) proofs of these lemmas from this
extended abstract (see the survey [11] and the references
therein).

3.1. Unique Games and Semidefinite Relaxation

We represent a unique game G as a distribution over
triples (u, v, π) where u and v are queries and π is a permu-
tation of the alphabet [k] of G. This representation differs

slightly from the one used in earlier work, but it turns out
to be very convenient, especially when dealing with parallel
repetition. We say that a game is a two-prover game if the
supports of the first and second component are disjoint. Our
results all hold for general (not necessary two-prover) unique
games, but note that essentially all known upper bounds on
the value of repeated unique games are known to hold only
in the two-prover case [10, 24, 13, 23].

We denote byV the set of possible queries, i.e., the sup-
port of the first and second components of the distribution G.
A solution (also called strategy) for the game G is a collec-
tion {lu}u∈V of labels in [k]. The value of such a solution is
the probability

Pr
(u,v,π)∼G

[π(lu) = lv] . (7)

The maximum of (7) over all possible solutions is denoted
by val(G).

The semidefinite program given in Figure 1 is a natural
relaxation of the value of a game. Let sdpval(G) denote the
optimum of this program. To see why sdpval(G) > val(G)
for any game G, notice that any solution {lu}u∈V of G can be
converted into a feasible solution of the SDP by setting for
each u ∈ V the vector ulu corresponding to the label lu to
some globally fixed unit vector, and all other k − 1 vectors
to zero.

The `-fold repetition of a game corresponds to the `-
fold product of the distribution G. We use the notations
u = (u(1), . . . , u(`)) and π = (π(1), . . . , π(`)) to denote the queries
and permutations of G`, respectively. If G is a two-prover
game, then following an approach of Feige and Lovász [10]
one can show that sdpval(G`) = sdpval(G)` [21, 14].

4. Correlated Distributions, Repeated Unique
Games, and Hellinger Distances

In this section we give our main “meta lemma”
(Lemma 4.5) that allows to derive strategies for two-prover
unique games from families of distributions with bounded
Hellinger distance. Our results for XOR and general unique
games will be derived by “plugging in” suitable distributions
into this lemma. (Raz’s result [25] can also be viewed in
this framework.) The main tool we use is the correlated
sampling lemma.

4.1. The Correlated Sampling Lemma

Consider two computationally unbounded provers that
share a source of randomness Z but cannot communicate
with each other. Assume we have some finite family of
distributions {Ru}u∈V over a domain Ω. The first prover is
given an index u ∈ V, the second prover is given v ∈ V
and they want to sample an element ru(Z) and rv(Z) from
distributions Ru and Rv, respectively. The next lemma shows



that using shared randomness, the provers can correlate their
samples such that provided Ru and Rv are statistically close,
they end up with the same sample (i.e., ru(Z) = rv(Z)) with
high probability.

Lemma 4.1. Let {Ru}u∈V be a family of distributions over
some domain Ω. Then, there exists a family of functions
{ru : [0, 1] → Ω}u∈V such that if Z is a random variable
uniformly distributed in [0, 1], then for every u ∈ V, ru(Z) is
distributed according to Ru, and for every u, v ∈ V,

Pr[ru(Z) = rv(Z)] =
1 − ∆(Ru,Rv)
1 + ∆(Ru,Rv)

> 1 − 2∆(Ru,Rv).

In this paper we actually use a continuous version of the
lemma, but it can be easily reduced to the discrete lemma by
using a sufficiently fine discretization of the domain. (We
omit the details in this extended abstract.)

The proof of the lemma uses a technique that has been
used in several instances in computer science. Broder [4]
used this technique for sketching sets, while the (discrete
version of the) correlated sampling lemma was first proven
by Kleinberg and Tardos [19] in the context of rounding
algorithms for linear programs (see also [6, Sec 4.1]). It was
rediscovered and used in the proof of the parallel repetition
theorem by Holenstein [13].

The idea of the proof is simplest to describe in the case
that every distribution Ru is uniform over some set S u from
a finite universe, and the sets S u all have the same cardi-
nality. In this case the provers can simply interpret the
shared randomness as a random ordering of the universe
and each prover outputs on input u the element ru(Z) that is
the minimal element in S u according to this order. Clearly,
ru(Z) is distributed uniformly in S u. On the other hand,
Pr[ru(Z) = rv(Z)] = |S u ∩ S v|/|S u ∪ S v|, which is equal to
(1 − ∆(Ru,Rv))/(1 + ∆(Ru,Rv)). For an arbitrary distribution
R, we can emulate the previous approach by duplicating ev-
ery element r in the support of R a number of times that is
proportional to Pr[R = r].

4.2. From Correlated Distributions to Strategies for
Unique Games

Definition 4.2. A family {Xu}u∈V of distributions of the form
Xu = (Ru, Lu) supported on Ω × [k] is called a distributional
strategy if for every u ∈ V, Lu is a function of Ru, i.e.,
for every u ∈ V and every r in the support of Ru, there is
exactly one i ∈ [k] such that the pair (r, i) is in the support of
the distribution Xu. Equivalently, we can say that for every
u ∈ V and every i , j ∈ [k], the supports of the conditional
distributions

[
Ru | Lu = i

]
and

[
Ru | Lu = j

]
are disjoint.

We can think of the random variable Ru as a random seed
that determines a label Lu for the query u ∈ V.

If a unique game G has value at least 1 − ε, it is easy to
construct a distributional strategy {Xu}u∈V such that

E
(u,v,π)∼G

∆(π.Xu, Xv) 6 ε , (8)

where π.Xu denotes the distribution obtained from Xu =

(Ru, Lu) by applying π to the second component, that is,

π.Xu
def
= (Ru, π(Lu)).

For instance, take Ω = {1} to be a singleton, and set each Xu

to be constantly (1, lu) where lu ∈ [k] is the label given to u.
On the other hand, the next lemma shows that if a distri-

butional strategy satisfies (8) for a game G, then G has value
at least 1 − 2ε.

Lemma 4.3. Suppose {Xu}u∈V is a distributional strategy
for a unique game G. Then,

val(G) > 1 − 2 E
(u,v,π)∼G

∆(π.Xu, Xv) . (9)

The proof relies on the correlated sampling lemma
(Lemma 4.1). A distributional strategy {Xu}u∈V is rounded
to a solution {lu}u∈V as follows: We apply Lemma 4.1 to
obtain functions ru : [0, 1]→ Ω. Then, we choose a random
number Z uniformly from [0, 1]. Now, for every u ∈ V, we
can uniquely determine a label lu such that (ru(Z), lu) is in
the support of Xu. These labels {lu}u∈V form our solution.
For the detailed proof, see Appendix A.1.

Remark 4.4. The above lemma is implicit in the analysis of
an approximation algorithm for unique games by Chlamtac,
Makarychev, and Makarychev [7]. Their algorithm obtains
strategies for unique games from certain embeddings into
L1-space. It is easy to construct such an embedding from a
distributional strategy. For details, see the full version of the
paper.

Lemma 4.5. Let G be a unique game. Suppose there exists
a distributional strategy {Xu}u∈V such that

E
(u,v,π)∼G

H2(π.Xu, Xv) 6 δ . (10)

Then, for every ` ∈ N, the `-fold repetition of G has value

val(G`) > 1 − 2
√

2`δ .

Proof. For u = (u(1), . . . , u(`)) ∈ V`, let Xu denote the prod-
uct distribution Xu(1) ⊗ · · · ⊗ Xu(`) . Note that {Xu}u∈V` is a
distributional strategy for the `-fold repeated game G`. By
Lemma 3.2 (subadditivity of H2 for product distributions),
the bound (10) implies that

E
(u,v,π)∼G`

H2(π.Xu, Xv)

6 E
(u,v,π)∼G`

H2(π(1).Xu(1) , Xv(1) ) + · · · + H2(π(`).Xu(`) , Xv(`) ) 6 `δ .



Hence, by Lemma 3.1 and the concavity of the square root
function,

E
(u,v,π)∼G`

∆(π.Xu, Xv) 6
√

2`δ ,

which implies by Lemma 4.3 that val(G`) > 1 − 2
√

2`δ. �

It is crucial for our results that the above lemma is based
on the square of the Hellinger distance, and not on the to-
tal variation distance, since the former can be quadratically
smaller than the latter. Moreover, as we shall see next, the
square of the Hellinger distance can be related to the objec-
tive function of the semidefinite relaxation.

4.3. From SDP Solutions to Correlated Distribu-
tions

In this section, we state three results that will allow us to
relate the left-hand side of (10) to one minus the value of an
optimal solution of the semidefinite program in Figure 1. We
present proofs for the first two lemmata in Section 5. The
proof for the third lemma is deferred to the full version of
the paper.

Lemma 4.6. Let t > 1 and let {ui}u∈V,i∈[k] be a feasible
solution of the SDP in Figure 1. Then, there exists a distri-
butional strategy {Xu}u∈V such that for every triple (u, v, π),

H2(π.Xu, Xv) 6 O(t) ·
∑

i∈[k]
1
2‖ui − uπ(i)‖

2 + k · 2−t . (11)

For the case k = 2, a stronger upper bound holds.

Lemma 4.7. Let k = 2 and let {ui}u∈V,i∈[k] be a feasible
solution of the SDP in Figure 1. Then, there exists a distri-
butional strategy {Xu}u∈V such that for every triple (u, v, π),

H2(π.Xu, Xv) 6 2 ·
∑

i∈[k]
1
2‖ui − uπ(i)‖

2 .

Let Γ be some Abelian group of order k (e.g., Zk) whose
elements are identified with [k] in some fixed arbitrary way.
We say that a permutation π on Γ is a Γ-shift if there exists
an s ∈ Γ such that for all a ∈ Γ, π(a) = a + s. Unique
games that use only Γ-shifts are known as linear games or
Γ-M2L(k) instances (e.g., [14, 16]). For such games, the
additive term k · 2−t in (11) can be avoided at the cost of a
worse multiplicative dependency on k.

Lemma 4.8. Let {ui}u∈V,i∈[k] be a feasible SDP solution and
let Γ be as above. Then there exists a distributional strategy
{Xu}u∈V such that for every triple (u, v, π) with π a Γ-shift,

H2(π.Xu, Xv) 6 ck ·
∑

i∈[k]
1
2 ‖ui − uπ(i)‖

2 , (12)

where ck is a factor depending only on k.

Remark 4.9. In order to illustrate the basic idea of the con-
struction of distributional strategies from SDP solutions, let
us consider the following special case. Suppose {ui}u∈V,i∈[k]
is a feasible SDP solution such that every vector ui ∈ R

d has
only nonnegative coordinates (with respect to the canonical
basis of Rd). Then, let {Xu}u∈V be the distributional strategy
such that

Pr[Xu = (r, i)] = ui(r)2 , (13)

for r ∈ [d] and i ∈ [k] where ui(r) denotes the rth coordi-
nate of ui. The above equation specifies probability distri-
butions over [d] × [k], because

∑
i∈[k],r∈[d] Pr[Xu = (r, i)] =∑

i∈[k] ‖ui‖
2 = 1. The nonnegativity and orthogonality of ui

and u j imply that the conditional distributions [Ru | Lu = i]
and [Ru | Lu = j] have disjoint support. Hence, {Xu}u∈V is
indeed a distributional strategy. On the other hand, we have
for every triple (u, v, π).

H2(π.Xu, Xv) =
∑
i∈[k]

1
2‖ui − uπ(i)‖

2 . (14)

If the vectors {ui}u∈V,i∈[k] have negative entries, the right
hand side of (14) is still an upper bound on H2(π.Xu, Xv).
However, the family of distributions {Xu}u∈V constructed
in (13) will in general fail to be a distributional strategy if
the solution vectors have negative entries.

4.4. Putting it Together

Combining Lemma 4.3 and the Lemmata 4.6–4.8, we get
the following theorem which implies Theorem 1.1 (round-
ing parallel repetitions of general unique games) and Theo-
rem 1.2 (rounding parallel repetitions of XOR games).

Theorem 4.10. For every ` ∈ N and every unique game G
with sdpval(G) > 1 − δ, we have val(G`) > 1 − 2

√
2s`δ ,

where

– s = O(log(k/δ)) if G is a unique game with alphabet [k],

– s = 2 if G is an XOR game (i.e., k = 2),

– s = ck if G is an instance of Γ-M2L(k).

Proof. Suppose G is a unique game on alphabet [k] with
sdpval(G) > 1 − δ. Let {ui}u∈V,i∈[k] be an optimal SDP
solution for G. Note that

E
(u,v,π)∼G

1
2‖ui − uπ(i)‖

2 = 1 − E
(u,v,π)∼G

〈ui, uπ(i)〉 6 δ .

We apply Lemma 4.6 for t = log(k/δ) to obtain a distributional
strategy that satisfies

E
(u,v,π)∼G

H2(π.Xu, Xv) 6 O(t) · δ + k · 2−t = O(δ log(k/δ)) .

Now Lemma 4.5 implies that val(G`) > 1 − O(
√
`δ log(k/δ))

for any ` ∈ N. The proof for the case that G is an XOR



game or an instance of Γ-M2L(k) is the same; the only
change is that instead of Lemma 4.6 we apply Lemma 4.7 or
Lemma 4.8 to obtain a distributional strategy. �

5. Constructions of Correlated Distributions
from SDP Solutions

5.1. Proof of Lemma 4.7

Lemma 4.7 (Restated). Let k = 2 and let {ui}u∈V,i∈[k] be a
feasible solution of the SDP in Figure 1. Then, there exists
a distributional strategy {Xu}u∈V such that for every triple
(u, v, π),

H2(π.Xu, Xv) 6 2 ·
∑

i∈[k]
1
2‖ui − uπ(i)‖

2 .

Let {ui}u∈V,i∈[k] be a feasible SDP solution with ui ∈ R
d.

For each u ∈ V, let u denote the unit vector u1 − u2 ∈ R
d.

We consider the distributional strategy {Xu}u∈V defined by

Pr[Xu = (r, i)] =

u(r)2 if sign u(r) = (−1)i,
0 otherwise.

Here u(r) denotes the rth coordinate of u. In other words, we
choose r according to the probability distribution given by
u(1)2, . . . ,u(d)2 and then set i to be 1 or 2 depending on the
sign of u(r).

Let us first consider the case that π is the identity permu-
tation. The square of the Hellinger distance of Xu and Xv can
be upper bounded by

H2(Xu, Xv) = 1
2

∑
r∈[n],

sign u(r)=sign u(r)

(
u(r) − u(r)

)2
+ 1

2

∑
r∈[n],

sign u(r),sign u(r)

u(r)2 + u(r)2

6 1
2 ‖u − u‖

2 = 1
2‖(u1 − u1) − (u2 − u2)‖2 .

The triangle inequality implies H2(Xu, Xv) 6 1
2 (‖u1 − u1‖ +

‖u2 − u2‖)2 6 ‖u1 − u1‖
2 + ‖u2 − u2‖

2, as desired. If π is
the permutation π(i) = 3 − i, then the same calculation as
before shows H2(π.Xu, Xv) 6 1

2‖u + u‖2. Again, the triangle
inequality implies H2(π.Xu, Xv) 6 ‖u1 − u2‖

2 + ‖u2 − u1‖
2.

Since there are no other permutations for k = 2, the proof is
complete. �

5.2. Proof of Lemma 4.6

Lemma 4.6 (Restated). Let t > 1 and let {ui}u∈V,i∈[k] be a
feasible solution of the SDP in Figure 1. Then, there exists a
distributional strategy {Xu}u∈V such that for every (u, v, π),

H2(π.Xu, Xv) 6 O(t) ·
∑

i∈[k]
1
2‖ui − uπ(i)‖

2 + k · 2−t . (15)

Let {ui}u∈V,i∈[k] be a feasible SDP solution with ui ∈ R
d.

The distributional strategy {Xu}u∈V we construct will consist
of distributions Xu = (Ru, Lu) over Ω × [k] with Ω = Rd.

The basic building blocks of our constructions are distri-
butions of the following kind: For w ∈ Rd, let Dw denote the
distribution over Rd whose density at x ∈ Rd is equal to

γσ,w(x) def
= 1

(2π)n/2σn · exp
(
− 1

2

∥∥∥ 1
σ

(x − w)
∥∥∥2

2

)
.

Here σ is a parameter that we choose as σ = 1/C
√

t for some
large enough constant C > 0. The distribution Dw is the
standard d-dimensional Gaussian distribution translated by
the vector w and scaled by the factor σ.

For u ∈ V and i ∈ [k], we define a distribution X(i)
u =

(R(i)
u , L

(i)
u ) over Rd × [k] as follows. The first component R(i)

u
is distributed according to Dũi , where we denote by w̃ the
unit vector 1

‖w‖w in direction w. The second component L(i)
u

is equal to the index j ∈ [k] for which the projection of R(i)
u

on ũ j is largest. Formally, the density function f of X(i)
u is

f (x, j) =

γσ,ũi (x) if 〈x, ũ j〉 > maxh∈[k]\{ j}〈x, ũh〉,
0 otherwise.

Finally, we define the distribution Xu as the convex com-
bination of the distributions X(1)

u , . . . , X
(k)
u with coefficients

‖u1‖
2, . . . , ‖uk‖

2.
The following claim shows that we can upper bound the

Hellinger distance of Du and Du in terms of the Euclidean
distance of u and u.

Claim 5.1. For any two vectors u, u ∈ Rd,

H2(Du,Du) 6 1
σ2 ‖u − u‖2 . (16)

Proof. For any x ∈ Rd, one gets√
γσ,u(x) · γσ,u(x) = 1

(2π)n/2σn · e−
1
4 ‖

1
σ (x−u)‖2− 1

4 ‖
1
σ (x−u)‖2

= 1
(2π)n/2σn · e−

1
8 ‖

1
σ (2x−(u+u))‖2− 1

8 ‖
1
σ (u−u)‖2

= exp
(
− 1

8 ‖
1
σ

(u − u)‖2
)
· γσ, 1

2 (u+u)(x)

> (1 − 1
σ2 ‖u − u‖2) · γσ, 1

2 (u+u)(x) , (17)

where the second equality follows by the parallelogram law,
‖a‖2+‖b‖2 = 1

2 ‖a + b‖2+ 1
2 ‖a − b‖2, and the last step follows

from the fact that 1 + x 6 ex for all x ∈ R.
Thus, the Hellinger distance of Du and Du satisfies

H2(Du,Du) = 1 −
∫
√
γσ,uγσ,u

(17)
6 1− (1− 1

σ2 ‖u − u‖2)
∫
γσ, 1

2 (u+u) = 1
σ2 ‖u − u‖2.

�



Using standard tail bounds for the Gaussian distribution,
we can derive a bound similar to (16) for the Hellinger dis-
tance of π.X(i)

u and X(π(i))
v .

Claim 5.2. For every i ∈ [k] and every permutation π of [k],

H2(π.X(i)
u , X

(π(i))
v ) 6 O(t) · ‖ũi − ũπ(i)‖

2 + k · 2−t .

Proof. Let j = π(i). By the triangle inequality for the
Hellinger distance (Lemma 3.3) and the inequality (a + b +

c)2 6 3(a2 + b2 + c2), we have

H2(π.X(i)
u , X

( j)
v ) 6 3

(
H2(π.X(i)

u , (R
(i)
u , j)

)
+H2((R(i)

u , j), (R( j)
v , j)

)
+ H2((R( j)

v , j), X( j)
v

))
. (18)

Claim 5.1 implies for the second term on the rhs of (18),

H2((R(i)
u , j), (R( j)

v , j)
)

= H2(Dũi ,Dũ j ) 6 O(t) · ‖ũi − ũ j‖
2 .

We bound the first term on the rhs of (18) by the correspond-
ing statistical distance,

H2(π.X(i)
u , (R

(i)
u , j)

)
6 ∆

(
π.X(i)

u , (R
(i)
u , j)

)
= Pr[π(L(i)

u ) , j]

=
∑

h∈[k]\{i}

Pr[L(i)
u = h] 6

∑
h∈[k]\{i}

Pr
x∼Dũi

[〈x, ũh〉 > 〈x, ũi〉] .

We can write x as ũi+σg, where g is a standard Gaussian vec-
tor. Hence, the event [〈x, ũh〉 > 〈x, ũi〉] = [〈g, ũh− ũi〉 > 1/σ].
The inner product 〈g, ũh − ũi〉 has a Gaussian distribution
with mean 0 and standard deviation

√
2. Therefore, by

standard estimates of the tail of the Gaussian distribution,
the probability of this event is at most e−

1
16σ2 . Thus, the

first term on the right-hand side of (18) contributes at most
3k · e−

1
16σ2 6 1/2 · k · 2−t. The same is true for the third term

in (18). The claim follows. �

Using the previous two claims, we can now show the
bound (15) on the squared Hellinger distance H2(π.Xu, Xv).
Since π.Xu and Xv are convex combinations of the dis-
tributions π.X(1)

u , . . . , π.X
(k)
u and X(1)

v , . . . , X
(k)
v , respectively,

Lemma 3.4 implies that H2(π.Xu, Xv) is at most∑
i∈[k]

‖ui‖·‖uπ(i)‖·H2(π.X(i)
u , X

(π(i))
v )+ 1

2

∑
i∈[k]

(‖ui‖−‖uπ(i)‖)2. (19)

The second sum in (19) contributes at most∑
i∈[k] ‖ui − uπ(i)‖

2, because for any two vectors u, u ∈ Rd,
(‖u‖ − ‖u‖)2 6 ‖u − u‖2 (triangle inequality). On the other
hand, Claim 5.2 allows us to bound the first sum in (19) by∑

i∈[k]

‖ui‖ · ‖uπ(i)‖ ·
(
O(t) · ‖ũi − ũπ(i)‖

2 + k · 2−t
)

6 O(t)
∑
i∈[k]

‖ui‖ · ‖uπ(i)‖ · ‖ũi − ũπ(i)‖
2 + k · 2−t

6 O(t)
∑
i∈[k]

‖ui − uπ(i)‖
2 + k · 2−t ,

where we used in the first step that (
∑

i∈[k] ‖ui‖ · ‖uπ(i)‖)2 6∑
i∈[k] ‖ui‖

2 ·
∑

i∈[k] ‖uπ(i)‖
2 = 1 (Cauchy–Schwarz) and in

the second step ‖ui‖ · ‖uπ(i)‖ · ‖ũi − ũπ(i)‖
2 = 2‖ui‖ · ‖uπ(i)‖ −

2〈ui, uπ(i)〉 6 ‖ui‖
2 +‖uπ(i)‖

2−2〈ui, uπ(i)〉 = ‖ui − uπ(i)‖
2 (AM–

GM inequality).The proof of Lemma 4.6 is complete. �

6. Conclusions and Open Problems

Our results show that for unique games, the value that the
semidefinite program really captures is not the integral value
of the game but rather the amortized value under many paral-
lel repetitions, i.e., the value val(G) = lim`→∞ val(G`)1/`. If
Khot’s unique game conjecture [15] is true then this means
that the amortized value can be much easier to approximate
than the original value of the game. We find this quite sur-
prising, as in general computing the amortized value of even
very simple finite games is considered a very hard problem.

Can one get rid of the log(1/δ) term in Theorem 1.1?
We conjecture that this should be possible by using a more
careful construction of the distributions Ru, although some
subtleties seem to arise. Another interesting open question
is whether strong parallel repetition holds for unique games
with entanglement. Although the authors disagree on the
answer to this question, it seems that some important insight
on it can be obtained by combining our techniques with those
of [14]. A more general question is to find more applications
of the interplay between the Hellinger and statistical dis-
tance. One such application was recently found by Kindler
et al. [18] who used Raz’s ideas to construct more efficient
foams in Rd.

A further consequence of our work is that Khot’s unique
games conjecture [15] is equivalent to the following, a priori
stronger hypothesis: for every ε > 0, there exists an alphabet
size k such that given a unique game G, it is NP-hard to
distinguish between the case that (1) val(G) > 1 − ε and
(2) for every distributional strategy {Xu}u∈V, the expected
squared Hellinger distance E(u,v,π)∼G H2(π.Xu, Xv) > 1 − ε.
We refer to the full version of the paper for further details on
this connection to the unique games conjecture.
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A Further Proofs

A.1 Proof of Lemma 4.3

Let {Xu}u∈V be a distributional strategy with Xu = (Ru, Lu)
distributed over Ω × [k] such that E(u,v,π)∼G ∆(π.Xu, Xv) = η.
Our goal is to show val(G) > 1 − 2η. Let hu : Ω → [k] be
the function such that Lu = hu(Ru). An easy calculation
shows that for every triple (u, v, π) there are two disjoint
sets B1, B2 ⊆ Ω such that hv(r) , π(hu(r)) if and only if
r ∈ B1 ∪ B2, and

∆(π.Xu, Xv) = ∆(Ru,Rv) + Pr[Ru ∈ B1] + Pr[Rv ∈ B2] . (20)

Let Z be a random variable uniformly distributed in [0, 1].
The correlated sampling lemma yields a collection of func-
tions {ru : [0, 1]→ Ω}u∈V such that ru(Z) is distributed ac-
cording to Ru and Pr[ru(Z) , rv(Z)] = 2∆(Ru,Rv)/(1 +

∆(Ru,Rv)). Define lu : [0, 1] → [k] as lu(Z) = hu(ru(Z)).
To derive a lower bound on the value of G, we estimate the
probability

Pr[lv(Z) , π(lu(Z))]
6 Pr[ru(Z) , rv(Z)] + Pr[ru(Z) ∈ B1] + Pr[rv(Z) ∈ B2]
(20)
=

2∆(Ru,Rv)
1 + ∆(Ru,Rv)

+ ∆(π.Xu, Xv) − ∆(Ru,Rv)

6 2∆(π.Xu, Xv) , (21)

where we use in the last step 0 6 ∆(Ru,Rv) 6 ∆(π.Xu, Xv).
Hence, the value of G is at least

val(G) > E
(u,v,π)∼G

Pr[lv(Z) = π(lu(Z))]

(21)
> 1 − E

(u,v,π)∼G
2∆(π.Xu, Xv) = 1 − 2η . �

Remark A.1. The above lower bound val(G) > 1 − 2η is
non-trivial only for η < 1/2. Using a more precise version of
the correlated sampling lemma, one can improve the lower
bound to val(G) > 1−η/1+η. This bound gives a non-trivial
guarantee whenever η < 1. Details will be presented in the
full version of the paper.
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