
Structure vs Combinatorics in Computational Complexity

Boaz Barak

October 7, 2013

Computational problems come in all different types and from all kinds of applications,
arising from engineering as well the mathematical, natural, and social sciences, and
involving abstractions such as graphs, strings, numbers, and more. The universe of
potential algorithms is just as rich, and so a priori one would expect that the best
algorithms for different problems would have all kinds of flavors and running times.
However natural computational problems “observed in the wild” often display a cu-
rious dichotomy— either the running time of the fastest algorithm for the problem is
some small polynomial in the input length (e.g., O(n) or O(n2)) or it is exponential
(i.e., 2εn for some constant ε > 0). Moreover, while indeed there is a great variety of
efficient algorithms for those problems that admit them, there are some general prin-
ciples such as convexity (i.e., the ability to make local improvements to suboptimal
solutions or local extensions to partial ones) that seem to underly a large number of
these algorithms.1 This phenomenon is also related to the “unreasonable effective-
ness” of the notion of NP-completeness in classifying the complexity of thousands of
problems arising from dozens of fields. While a priori you would expect problems in
the class NP (i.e., those whose solution can be efficiently certified) to have all types of
complexities, for natural problems it is often the case that they are either in P (i.e.,
efficiently solveable) or are NP-hard (i.e., as hard as any other problem in NP, which
often means complexity of 2εn, or at least 2n

ε
).

To be sure, none of these observations are universal laws. In fact there are theorems
showing exceptions to such dichotomies: the Time Hierarchy Theorem says that for
essentially any time-complexity function T (·) there is a problem whose fastest algo-
rithm runs in time (essentially) T (n). Also, Ladner’s Theorem says that, assuming
P 6=NP, there are problems that are neither in P nor are NP-complete. Moreover,
there are some natural problems with apparent “intermediate complexity”. Perhaps
the most well known example is the Integer Factoring problem mentioned below.

1The standard definition of “convexity” of the solution space of some problem only applies to
continuous problems and means that any weighted average of two solutions is also a solution. How-
ever, I use “convexity” here in a broad sense meaning having some non-trivial ways to combine
several (full or partial) solutions to create another solution; for example having a matroid structure,
or what’s known as “polymorphisms” in the constraint-satisfaction literature.

1

http://cstheory.stackexchange.com/questions/19256/overarching-reasons-why-problems-are-in-p-or-bpp
http://video.ias.edu/csdm/complexityconstraint


Nevertheless, the phenomenon of dichotomy, and the related phenomenon of recur-
ring algorithmic principles across many problems, seem far too prevalent to be just
an accident, and it is these phenomena that are the topic of this essay.

I believe that one reason underlying this pattern is that many computational prob-
lems, in particular those arising from combinatorial optimization, are unstructured.
The lack of structure means that there is not much for an algorithm to exploit and so
the problem is either “very easy”— e.g., the solution space is simple enough so that
the problem can be solved by local search or convex optimization2— or it is “very
hard”— e.g., it is NP-hard and one can’t do much better than exhaustive search.
On the other hand there are some problems that posses a certain (often algebraic)
structure, which typically is exploitable in some non-trivial algorithmic way. These
structured problems are hence never “extremely hard”, but they are also typically not
“extremely easy” since the algorithms solving them tend to be more specialized, tak-
ing advantage of their unique properties. In particular, it is harder to understand the
complexity of these algebraic problems, and they are more likely to yield algorithmic
surprises.

I do not know of a good way to formally classify computational tasks into combina-
torial/unstructured vs. algebraic/structured ones, but in the rest of this essay I try
to use some examples to get a better sense of the two sides of this divide. The ob-
servations below are not novel, though I am not aware of explicit expositions of such
a classification (and would appreciate any pointers, as well as any other questions or
critique). As argued below, more study into these questions would be of significant
interest, in particular for cryptography and average-case complexity.

Combinatorial/Unstructured problems

The canonical example of an unstructured combinatorial problem is SAT — the task
of determining, given a Boolean formula ϕ in variables x1, . . . , xn with the operators
¬,∧,∨, whether there exists an assignment x to the variables that makes ϕ(x) true.
SAT is an NP-complete problem, which means it cannot be solved efficiently unless
P=NP. In fact, the Exponential Time Hypothesis posits that every algorithm solving
SAT must take at least 2εn time for some ε > 0. SAT illustrates the above dichotomy
in the sense that its natural restrictions are either as hard as the general, or become
easily easily solvable, as in the case of the 2SAT problem (where the formula is in
conjunctive normal form with each clause of arity 2) that can be solved efficiently via
a simple propagation algorithm. This observation applies much more generally than
SAT. In particular the widely believed Feder-Vardi dichotomy conjecture states that

2Of course even if the algorithm is simple, analyzing it can be quite challenging, and actually
obtaining the fastest algorithm, as opposed to simply one that runs in polynomial time, often requires
additional highly non-trivial ideas.

2

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Exponential_time_hypothesis
http://dx.doi.org/10.1007/978-3-642-20712-9_26
http://eccc.hpi-web.de/report/2009/059/


Figure 1: An illustration of the solution space geometry of a random SAT formula, where each
point corresponds to an assignment with height being the number of constraints violated by the
assignment. The left figure depicts the “ball” regime, where a satisfying assignment can be found at
the bottom of a smooth “valley” and hence local algorithms will quickly converge to it. The right
figure depicts the “shattered” regime where the surface is very ragged, with an exponential number
of crevices and local optima, thus local algorithms (and as far as we know any algorithm) will likely
fail to find a satisfying assignment. Figures courtesy of Amin Coja-Oghlan.

every constraint satisfaction problem (CSP) is either NP hard or in P. In fact, re-
searchers conjecture (and have partially confirmed) the stronger statement that every
CSP can either be solved by some specific algorithms of low polynomial-time (either
propagation or generalizations of Gaussian elimination) or is NP hard via a linear
blowup reduction from SAT, and hence (under the Exponential Time Hypothesis)
cannot be solved faster than 2εn time for some ε > 0.3

Random SAT formulas also display a similar type of dichotomy. Recent research
into random k-SAT (based also on tools from statistical physics) suggests that they
have multiple thresholds where the problem changes its nature. When the density α
(i.e., ratio of constraints to variables) of the formula is larger than some number αs
(equal roughly to 2k ln 2) then with high probability the formula is “overconstrained”
and no satisfying assignment exists. There is some number αd < αs (equal roughly
to 2k ln k/k), such that for α < αd, the space of satisfying assignments for a random
formula looks roughly like a discrete ball, and, due to this relatively simple geome-
try some local-search type algorithms can succeed in finding satisfying assignments.
However for α ∈ (αd, αs), satisfying assignments still exist, but the geometry of the
solution space becomes vastly different, as it shatters into exponentially many clus-
ters, each such cluster separated from the others by a sea of assignments that violate
a large number of the constraints, see Figure 1. In this regime no efficient algorithm

3The main stumbling block for completing the proof is dealing with those CSPs that require a
Gaussian-elimination type algorithm to solve; one can make the argument that those CSP’s actu-
ally belong to the algebraic side of our classification, further demonstrating that obtaining precise
definitions of these notions is still a work in progress. Depending on how it will be resolved, the
Unique Games Conjecture, which I discussed here, might also give rise to CSP’s with “intermediate
complexity” in the realm of approximation algorithms. Interestingly, both these issues go away when
considering random, noisy, CSP’s, as in this case solving linear equations becomes hard, and solving
Unique Games becomes easy.

3

http://en.wikipedia.org/wiki/Constraint_satisfaction_problem
http://arxiv.org/pdf/0911.2322v1.pdf
http://windowsontheory.org/2012/07/31/truth-vs-proof-the-unique-games-conjecture-and-feiges-hypothesis/


is known to find the satisfying assignment, and it is possible that this is inherently
hard.4

Dichotomy means that when combinatorial problems are hard, then they are typically
very hard, not just in the sense of not having a subexponential algorithm, but they
also can’t be solved non-trivially in some intermediate computational models that are
stronger than P but cannot solve all of NP such as quantum computers, statistical
zero knowledge, and others. In particular for combinatorial problems (quoting Lovász)
the existence of a good characterization (i.e., the ability to efficiently verify both the
existence and non-existence of a solution) goes hand-in-hand with the existence of a
good algorithm. Using complexity jargon, in the realm of combinatorial optimization
it seems to hold that P=NP∩coNP, even though we believe this is false in general.
Indeed, for many combinatorial problems such as matching, max flow, planarity, etc..
demonstrating a good characterization is an important step toward finding an efficient
algorithm. This is related to the notion of duality in convex programming, which is
often the method of choice to solve such problems.

Combinatorial problems can be quite useful for cryptography. It is possible to obtain
one-way functions from random instances of combinatorial problems such as SAT
and Clique. Moreover, the problem of attacking a cryptographic primitive such as a
block cipher or a hash function can itself be considered a combinatorial problem (and
indeed this connection was used for cryptanalysis). However, these are all private key
cryptographic schemes, and do not allow two parties to communicate securely without
first exchanging a secret key. For the latter task we need public key cryptography,
and as we discuss below, the currently known and well-studied public key encryption
schemes all rely on algebraic computational problems.

Algebraic/Structured problems

Factoring is a great example of an algebraic problem; this is the task of finding,
given an n-bit integer N , the prime numbers p1, . . . , pk such that N = p1 · · · pk. No
polynomial time algorithm is known for Factoring, but it had seen some non-trivial
algorithmic advances. While the natural trial-division algorithm takes roughly 2n/2

steps to solve Factoring, the Number Field Sieve algorithm, which is the current
best, takes roughly 2n

1/3polylog(n) steps. Factoring can also be solved in polynomial-
time on quantum computers using Shor’s Algorithm. Finally, Factoring (or more
accurately, the decision problem obtained by looking at individual bits of the output)

4The Survey Propagation Algorithm is a very interesting algorithm that arose from statistical
physics intuition, and is experimentally better than other algorithms at solving random k-SAT
formulas for small k such k = 3, 4. However, it is believed, that at least for larger k, it too cannot
succeed in the regime where the solution space geometry shatters. The best known algorithm for
random k-SAT for large k is given in this paper of Amin Coja-Oghlan.

4

http://arxiv.org/pdf/0803.2122v2.pdf 
http://www.amazon.com/Combinatorial-Problems-Exercises-Chelsea-Publishing/dp/0821842625
http://users.soe.ucsc.edu/~optas/papers/barriers.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.181&rep=rep1&type=pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=65085
http://en.wikipedia.org/wiki/Public-key_cryptography
http://www.crypto-world.com/FactorWorld.html
http://www.ams.org/notices/199612/pomerance.pdf
http://www.scottaaronson.com/blog/?p=208
http://arxiv.org/abs/cs.CC/0212002
http://arxiv.org/pdf/0904.3395v1.pdf
http://arxiv.org/pdf/1102.3145v1.pdf
http://arxiv.org/pdf/0902.3583v1.pdf


is also in the class NP∩coNP, which means that one can efficiently verify the value
of a particular bit of the answer, no matter if this value is zero or one. These results
almost certainly mean that Factoring is not NP complete.

There is another, more subjective sense, in which I find Factoring different from
SAT. I personally would be much more shocked by a 2

√
n-time algorithm for SAT

than by a 2n
1/6

-time algorithm for Factoring. The reason is that, while people have
found clever ways to speed up the 2n time exhaustive search algorithm for SAT (es-
pecially on certain types of instances), these approaches all seem to inherently require
exponential time, and are not as qualitatively different from exhaustive search in the
way that the number field sieve is different from trial division. In contrast, Fac-
toring clearly has strong algebraic structure that we do not completely understand,
and perhaps have not reached the limit of its exploitation by algorithms. To see that
this is not completely implausible, consider the problem of computing the discrete
logarithm in fields of small characteristic. This problem shares many properties with
Factoring, and it also shared the property of having a best-known running time of
2n

1/3polylog(n) until this was recently improved to 2n
1/4polylog(n) and then to 2polylog(n).

Not all algebraic problems are hard. Factoring univariate polynomials over finite
fields can be solved efficiently using the Berlekamp or Cantor-Zassenhaus algorithms
(see e.g. chapter 21 here). This algorithm also exemplifies the statement above,
that algorithms for algebraic problems are often very specialized and use non-trivial
properties of the problem’s structure. For this reason, it’s harder to predict with con-
fidence what is the best algorithm for a given algebraic problems, and over the years
we have seen several surprising algorithms for such problems, including, for example,
the fast matrix multiplication algorithms, the non-trivial factoring algorithms and
deterministic primality testing, as well as the new algorithm for discrete logarithm
over small-characteristic fields mentioned above.

Relation to cryptography. Algebraic problems are very related to public key cryp-
tography. The most widely used public key cryptosystem is RSA, whose security relies
on the hardness of Factoring. The current subexponential algorithms for Factor-
ing are the reason why we use RSA keys of 1024 or 2048 bits, even though even
the yet-to-built exaflop supercomputers would take thousands of years to perform,
say, 2100 computational operations. This also demonstrates how fragile is RSA to
any surprising algorithmic advances. If the exponent of the best factoring algorithm
would halve (i.e., change from 1/3 to 1/6) then, roughly speaking, to get equivalent
security we would need to square the size of the key. Since the RSA encryption and
decryption algorithms take time which is at least quadratic in the size of the key, that
would make RSA pretty impractical.

Cryptosystems based on the discrete logarithm problem in elliptic curves yield one
alternative to RSA which currently is not known to be broken in subexponential
time. Elliptic-curve discrete log is of course also very much an algebraically structured

5

http://courses.cs.washington.edu/courses/csep573/11wi/lectures/ashish-satsolvers.pdf
http://eprint.iacr.org/2013/095.pdf
http://arxiv.org/abs/1306.4244
http://shoup.net/ntb/ntb-v2.pdf
http://en.wikipedia.org/wiki/RSA_(algorithm)


problem, and so, I would argue, one in which further algorithmic surprises are hard
to rule out. Moreover, like factoring, this problem can be solved in polynomial time
by quantum computers, using Shor’s algorithm.

The only other public key cryptosystems that are researched enough to have some
confidence in their security are based on decoding problems for linear codes or integer
lattices. These problems are not known to have subexponential algorithms, classical
or quantum. Moreover, some variants of these problems are actually NP-hard. Specif-
ically, theses problem are parameterized by a number α which is the approximation
factor, where smaller α means the problem is harder. For example, the shortest vec-
tor problem in a lattice can be solved efficiently for α ≥ cn (where c > 1 is some
constant and n is the dimension of the lattice, which is related to the length of the
input), and the problem is NP hard for α ≤ nδ (where δ = δ(n) is some function of n
tending slowly to zero). For this reason lattice problems were once seen as a potential
approach to getting both private and public crypto based on the minimal assumption
that P6=NP, which in particular would yield public key crypto based on unstructured
problems such as SAT. However, we only know how to get public key crypto from
these problems for α = ne for some e > 1/2 while we have reason to believe that for
α > n1/2 the problem does actually possess algebraic (or at least geometric) struc-
ture; this is because in this range the problem has a “good characterization” (i.e.,
in NP∩coNP or AM∩coAM). A similar phenomenon also occurs for other problems
such as learning parity with noise and random 3SAT (see discussion in this paper
with Applebaum and Wigderson)— there seem to be two thresholds αG < αE such
that for α < αG the problem is hard and arguably unstructured, for α ∈ (αG, αE) the
problem becomes useful for public key cryptography, but also seems to suddenly ob-
tain some structure such as a “good characterization”, while for α > αE the problem
becomes easy. Another sign of potential structure in lattice problems is the existence
of a subexponential quantum algorithm for the hidden subgroup problem in dihedral
groups, which is related to these problems.

The bottom line is that based on the currently well studied schemes, structure is
strongly associated with (and perhaps even implied by) public key cryptography.
This is troubling news, since it makes public key crypto somewhat of an “endangered
species” that could be wiped out by a surprising algorithmic advance. Therefore the
question of whether structure is inherently necessary for public key crypto is not only
of mathematical interest but also of practical importance as well. Cryptography is
not just an application of this classification but also provides a useful lens on it. The
distinction between private key and public key crypto mirrors the distinction between
unstructured and structured problems. In the private key world, there are many dif-
ferent constructions of (based on current knowledge) apparently secure cryptosystems;
in fact, one may conjecture (as was done by Gowers) that if we just combined a large
enough number of random reversible local operations then we would obtain a secure
block cipher. In contrast, for public key cryptography, finding a construction that

6

http://www.eng.tau.ac.il/~bennyap/pubs/ncpkcFull1.pdf
http://www.eng.tau.ac.il/~bennyap/pubs/ncpkcFull1.pdf
http://arxiv.org/abs/quant-ph/0302112
http://arxiv.org/abs/cs/0304005
http://dx.doi.org/10.1017/S0963548300001917


strikes the right balance between structure and hardness is a very hard task, worthy
of a Turing award, and we still only know of a handful or so such constructions.

A different approach to average case complexity

I am particularly interested in this classification in the context of average-case com-
plexity. In the case of worst-case complexity, while we have not yet managed to
prove that P 6=NP, complexity theorists achieved something like the next best thing—
classifying a large number of problems into hard and easy ones based on this single
assumption. We have not been able to replicate this success in average case complex-
ity, and there is a good reason for that. Our main tool for basing one assumption on
another one— the reduction— is extremely problematic in average case complexity,
since there are inherent reasons why a reduction would not preserve the distribution
of the inputs. To illustrate this, suppose that we tried to show that an average-case
problem A is no harder than an average-case problem B using a standard Karp re-
duction f (i.e., f : {0, 1}n → {0, 1}m is a function mapping an A-input x into a
B-input y such that B(y) = A(x)). For simplicity, assume that the input distribution
for both problems is the uniform distribution. This would imply that for a random
x ∈ {0, 1}n, f(x) should be distributed close to the uniform distribution over {0, 1}m.
But we cannot expect this to happen in any reasonable reduction, as all of them add
gadgets or blow up the size of the instance in some way, meaning that m > n, in
which case f(x) is distributed over a subset of {0, 1}m of size less than 2m−1 and
hence is far from the uniform distribution.5

This difficulty is one reason why the theory of average-case complexity is much less
developed than the theory for worst-case complexity, even though average-case com-
plexity is much more relevant for many applications. The observations above suggest
that at least for combinatorial problems, we might hope for a different approach: de-
fine a meta conjecture that stipulates that for a whole class of average-case problems,
a certain algorithmic framework yields the optimal efficient algorithm, meaning that
beating the performance of that algorithm would be infeasible (e.g., take exponential
time). To make things more concrete, consider the following hypothesis from a paper

5As further argument that reductions should increase the input length, note that if A and B
were shown equivalent by reductions f and g that shrink the size of the input even by a single bit,
then by repeating these reductions recursively shows that both A and B can be solved in polynomial
time. This argument can be extended to the case that f and g are length preserving, under the
assumption that f ◦ g is not too close to the identity permutation and that the inputs of length
n− 1 are embedded in the set of inputs of length n. One can also use similar arguments to rule out
certain types of probabilistic reductions, even those that increase the input size, if we assume the
reduction is efficiently invertible.

7

http://www.acm.org/announcements/turing_2002.html
http://www.boazbarak.org/Papers/sdpopt.pdf
http://www.boazbarak.org/Papers/sdpopt.pdf
http://www.boazbarak.org/Papers/sdpopt.pdf
http://www.boazbarak.org/Papers/sdpopt.pdf
http://www.boazbarak.org/Papers/sdpopt.pdf
http://www.boazbarak.org/Papers/sdpopt.pdf
http://www.boazbarak.org/Papers/sdpopt.pdf
http://www.boazbarak.org/Papers/sdpopt.pdf
http://www.boazbarak.org/Papers/sdpopt.pdf
http://www.boazbarak.org/Papers/sdpopt.pdf


with Kindler and Steurer:

Random CSP Hypothesis. For every predicate P : {0, 1}l → {0, 1}, if
we let Random Max(P ) be the problem of estimating the fraction of con-
straints that can be satisfied for an instance chosen at random, then no ef-
ficient algorithm can obtain a better approximation to Random Max(P )
than α(P ), where α(P ) is the approximation obtained by the canonical
semidefinite program (a type of convex relaxation) to this problem.6

Note that this is a much more general conjecture that P6= NP, which can be reduced
to the statement that a single problem (say worst-case SAT) cannot be efficiently
solved. In contrast, the Random CSP Hypothesis contains an unbounded number of
hardness conjectures (one for every predicate) that (except in very special cases) are
not known to be reducible to one another. Of course, to derive a concrete assumption
about a predicate P from this hypothesis one needs to calculate α(P ), but fortunately
for random CSP’s this can be done easily— one can of course run the algorithm, but
there is also an analytical expression for this quantity.

Despite it being such a general hypothesis, I don’t think the Random CSP Hypothesis
is yet general enough— there may well be significant extensions to this hypothesis
that are still true, involving combinatorial problems different than CSP’s, and dis-
tributions different than the uniform one. Perhaps with time, researchers will find
the “right” meta conjecture which will capture a large fraction of the problems we
consider “combinatorial”.

At first brush, it might seem that I’m suggesting to trivialize research in average-
case complexity by simply assuming all the hardness results we wish for. But of
course, there is still a very real challenge to find out if these assumptions are actually
true! Given our current state of knowledge, I don’t foresee an unconditional proof
of these types of assumptions, or even a reduction to a single problem, any time
soon. But, as I discussed before this doesn’t mean we can’t gather evidence on these
meta assumptions. However, such assumptions form very “fat targets” for potential
refutations. For example, all we have to do to refute the Random 3CSP Hypothesis
is to find a single predicate P and a single efficient algorithm A such that A gives a
better approximation factor than α(P ) for Random Max(P ). In fact, there are very
natural candidate algorithms to do just that, including in particular more complicated
convex programs known as semidefinite programming hierarchies. Analyzing the
performance of such algorithms raises some fascinating mathematical questions, many
of which we haven’t yet been able to solve, and this is a very interesting research area

6The notion of “chosen at random” roughly corresponds to the uniform distribution over inputs,
or the uniform distribution with an appropriately “planted” satisfying assignment, with the precise
notion of “estimation” being the appropriate one for these different models; see the paper for details.
The Random CSP Hypothesis deals with the overconstrainted regime of random SAT formulas, as
opposed to the underconstrained regime in discussed above in the the context of phase transitions.

8

http://www.boazbarak.org/Papers/sdpopt.pdf
http://www.boazbarak.org/Papers/sdpopt.pdf
http://windowsontheory.org/2012/07/31/truth-vs-proof-the-unique-games-conjecture-and-feiges-hypothesis/


in its own right. With effort and time, if no refutation is found, we might gain
confidence in the veracity of such meta assumptions, and obtain a much clearer view
of the landscape of average-case complexity, and complexity at large.

Conclusions

While much of what I discussed consists of anecdotal examples, I believe that some
works, such as those related to the Feder-Vardi conjecture or to phase transitions
in random CSP’s, offer a glimpse of a potential general theory of the complexity of
combinatorial problems. I think there is room for some ambitious conjectures to try
to illuminate this area. Some of these conjectures might turn out to be false, but
we can learn a lot from exploring them. Understanding whether the “markers of
structure” such as subexponential algorithms, quantum algorithms, good character-
ization, usefulness for public key cryptography, etc.. need always go together would
be extremely useful for many applications, and in particular cryptography. Even
more speculatively, perhaps thinking about these issues can help towards the goal of
unconditional results. The richness of the space of algorithms is one of the main “ex-
cuses” offered for our relatively little success in proving unconditional lower bounds.
If indeed this space is much more limited for combinatorial problems, perhaps this
can help in finding such proofs.7

Acknowledgements. I thank Scott Aaronson, Dimitris Achlioptas, Amin Coja-
Oghlan, Tim Gowers, and David Steurer for useful comments and discussion.

7In some sense, such an approach to proving lower bounds is dual to Mulumley’s approach
of “Geometric Complexity Theory” (GCT). (For more information about GCT, see the talks in
this workshop, and also this StackExchange answer, this presentation and this paper.) The GCT
approach attempts to use specific properties of structured functions such as the permanent to obtain
a lower bound; these properties are actually “constructive” in the Razborov-Rudich sense of Natural
Proofs. If we focused on combinatorial, “unstructured”, problems then we would need to come up
with general properties guaranteeing hardness, that would also apply to random functions (which are
the ultimate unstructured functions). The Razborov-Rudich result implies such properties would
be inherently non-constructive. Valiant’s approach for proving certain types of lower bounds via
Matrix Rigidity can be thought of as an instance of the latter approach.

9

http://intractability.princeton.edu/blog/2009/12/geometric-complexity-theory-workshop/
http://intractability.princeton.edu/blog/2009/12/geometric-complexity-theory-workshop/
http://cstheory.stackexchange.com/questions/17610/wikipedia-style-explanation-of-geometric-complexity-theory
http://math-www.uni-paderborn.de/agpb/vortrag/pbuerg-CCC12-static-1.pdf
http://www.cs.toronto.edu/~jgrochow/grochow-gct-unity.pdf

