
Computational Complexity and Information Asymmetry in

Financial Products

(Working paper)

Sanjeev Arora∗ Boaz Barak∗ Markus Brunnermeier† Rong Ge∗

October 19, 2009

Abstract

Traditional economics argues that financial derivatives, like CDOs and CDSs, ameliorate the
negative costs imposed by asymmetric information. This is because securitization via derivatives
allows the informed party to find buyers for less information-sensitive part of the cash flow
stream of an asset (e.g., a mortgage) and retain the remainder. In this paper we show that this
viewpoint may need to be revised once computational complexity is brought into the picture.
Using methods from theoretical computer science this paper shows that derivatives can actually
amplify the costs of asymmetric information instead of reducing them. Note that computational
complexity is only a small departure from full rationality since even highly sophisticated investors
are boundedly rational due to a lack of requisite computational resources.

See also the webpage http://www.cs.princeton.edu/~rongge/derivativeFAQ.html for
an informal discussion on the relevance of this paper to derivative pricing in practice.

∗Department of Computer Science and Center for Computational Intractability, Princeton University, {arora,
barak, rongge}@cs.princeton.edu
†Department of Economics and Bendheim Center for Finance, Princeton University, markus@princeton.edu

1

http://www.cs.princeton.edu/~rongge/derivativeFAQ.html

1 Introduction

A financial derivative is a contract entered between two parties, in which they agree to exchange
payments based on the performance or events relating to one or more underlying assets. The
securitization of cash flows using financial derivatives transformed the financial industry over the
last three decades. In recent years derivatives have grown tremendously, both in market volume
and sophistication. The total volume of trades dwarfs the world’s GDP. This growth has attracted
criticism (Warren Buffet famously called derivatives “financial weapons of mass destruction”), and
many believe derivatives played a role in enabling problems in a relatively small market (U.S.
subprime lending) to cause a global recession. (See Appendix A for more background on financial
derivatives and [CJS09, Bru08] for a survey of the role played by derivatives in the recent crash.)

Critics have suggested that derivatives should be regulated by a federal agency similar to FDA or
USDA. Opponents of regulation counter that derivatives are contracts entered into by sophisticated
investors in a free market, and play an important beneficial role. All this would be greatly harmed
by a slow-moving regulatory regime akin to that for medicinal drugs and food products.

From a theoretical viewpoint, derivatives can be beneficial by “completing markets” and by
helping ameliorate the effect of asymmetric information. The latter refers to the fact that securiti-
zation via derivatives allows the informed party to find buyers for less information-sensitive part of
the cash flow stream of an asset (e.g., a mortgage) and retain the remainder. DeMarzo [DeM05] sug-
gests this beneficial effect is quite large. (We refer economist readers to Section 1.3 for a comparison
of our work with DeMarzo’s.)

The practical downside of using derivatives is that they are complex assets that are difficult to
price. Since their values depend on complex interaction of numerous attributes, the issuer can easily
tamper derivatives without anybody being able to detect it within a reasonable amount of time.
Studies suggest that valuations for a given product by different sophisticated investment banks
can be easily 17% apart [BC97] and that even a single bank’s evaluations of different tranches
of the same derivative may be mutually inconsistent [Duf07]. Many sources for this complexity
have been identified, including the complicated structure of many derivatives, the sheer volume of
financial transactions, the need for highly precise economic modeling, the lack of transparency in
the markets, and more. Recent regulatory proposals focus on improving transparency as a partial
solution to the complexity.

This paper puts forward computational complexity as an aspect that is largely ignored in such
discussions. One of our main results suggests that it may be computationally intractable to price
derivatives even when buyers know almost all of the relevant information, and furthermore this
is true even in very simple models of asset yields. (Note that since this is a hardness result, if it
holds in simpler models it also extends for any more model that contains the simpler model as a
subcase.) This result immediately posts a red flag about asymmetric information, since it implies
that derivative contracts could contain information that is in plain view yet cannot be understood
with any foreseeable amount of computational effort. This can be viewed as an extreme case
of bounded rationality [GSe02] whereby even the most sophisticated investment banks such as
Goldman Sachs cannot be fully rational since they do not have unbounded computational power.
We show that designers of financial products can rely on computational intractability to disguise
their information via suitable “cherry picking.” They can generate extra profits from this hidden
information, far beyond what would be possible in a fully rational setting. This suggests a revision of
the accepted view about the power of derivatives to ameliorate the effects of information asymmetry.

Before proceeding with further details we briefly introduce computational complexity and asym-
metric information.

1

Computational complexity and informational asymmetry Computational complexity stud-
ies intractable problems, those that require more computational resources than can be provided by
the fastest computers on earth put together. A simple example of such a problem is that of factor-
ing integers. It’s easy to take two random numbers —say 7019 and 5683— and multiply them —in
this case, to obtain 39888977. However, given 39888977, it’s not that easy to factor it to get the
two numbers 7019 and 5683. Algorithm that search over potential factors take very long time. This
difficulty becomes more pronounced as the numbers have more and more digits. Computer scien-
tists believe that factoring an n-digit number requires roughly exp(n1/3) time to solve,1 a quantity
that becomes astronomical even for moderate n like 1000. The intractability of this problem leads
to a concrete realization of informational asymmetry. Anybody who knows how to multiply can
randomly generate (using a few coin flips and a pen and paper) a large integer by multiplying
two smaller factors. This integer could have say 1000 digits, and hence can fit in a paragraph
of text. The person who generated this integer knows its factors, but no computational device
in the universe can find a nontrivial factor in any plausible amount of time.2 This informational
asymmetry underlies modern cryptosystems, which allow (for example) two parties to exchange
information over an open channel in a way that any eavesdropper can extract no information from
it —not even distinguish it from a randomly generated sequence of symbols. More generally, in
computational complexity we consider a computational task infeasible if the resources needed to
solve it grow exponentially in the length of the input, and consider it feasible if these resources only
grow polynomially in the input length.

For more information about computational complexity and intractability, we refer readers to
the book by Arora and Barak [AB09].

Akerloff’s notion of lemon costs and connection to intractabilty. Akerloff’s classic 1970
paper [Ake70] gives us a simple framework for quantifying asymmetric information. The simplest
setting is as follows. You are in the market for a used car. A used car in working condition is
worth $1000. However, 20% of the used cars are lemons (i.e., are useless, even though they look
fine on the outside) and their true worth is $0. Thus if you could pick a used car at random then its
expected worth would be only $800 and not $1000. Now consider the seller’s perspective. Suppose
sellers know whether or not they have a lemon or not. Then a seller who knows that his car is not
a lemon would be unwilling to sell for $800, and would exit the market. Thus the market would
feature only lemons, and nobody would buy or sell. Akerloff’s paper goes on to analyze reasons
why used cars do sell in real life. We will be interested in one of the reasons, namely, that there
could be a difference between what a car is worth to a buyer versus a seller. In the above example,
the seller’s value for a working car will have to be $200 less than the buyer’s in order for trade to
occur. In this case we say that the “lemon cost” of this market is $200. Generally, the higher this
cost, the less efficient is the market.

We will measure the cost of complexity by comparing the lemon cost in the case that the buyers
are computationally unbounded, and the case that they can only do polynomial-time computation.
We will show that there is a significant difference between the two scenarios.

Results of this paper. From a distance, our results should not look surprising to computer
scientists. Consider for example a derivative whose contract contains a 1000 digit integer n and has

1The precise function is more complicated, but in particular the security of most electronic commerce depends on
the infeasibility of factoring integers with roughly 800 digits.

2Experts in computational complexity should note that we use factoring merely as an simple illustrative example.
For this reason we ignore the issue of quantum computers, whose possible existence is relevant to the factoring problem,
but does not seem to have any bearing on the computational problems used in this paper.

2

a nonzero payoff iff the unemployment rate next January, when rounded to the nearest integer, is the
last digit of a factor of n. A relatively unsophisticated seller can generate such a derivative together
with a fairly accurate estimate of its yield (to the extent that unemployment rate is predictable),
yet even Goldman Sachs would have no idea what to pay for it. This example shows both the
difficulty of pricing arbitrary derivatives and the possible increase in asymmetry of information via
derivatives.

While this “factoring derivative” is obviously far removed from anything used in current markets,
in this work we show that similar effects can be obtained in simpler and more popular classes of
derivatives that are essentially the ones used in real life in securitization of mortgages and other
forms of debt.

The high level idea is that these everyday derivatives are based on applying threshold functions
on various subsets of the asset pools. Our result is related to the well known fact that random
election involving n voters can be swung with significant probability by making

√
n voters vote

the same way. Private information for the seller can be viewed as a restriction of the input
distribution known only to the seller. The seller can structure the derivative so that this private
information corresponds to “swinging the election.” What is surprising is that a computationally
limited buyer may not have any way to distinguish such a tampered derivative from untampered
derivatives. Formally, the indistinguishability relies upon the conjectured intractability of the
planted dense subgraph problem.3 This is a well studied problem in combinatorial optimization
(e.g., see [FPK01, Kho04, BCC+09]), and the planted variant of it has also been recently proposed
by Appelbaum et al. [ABW09] as a basis for a public-key cryptosystem.

Note that the lemon issue for derivatives has been examined before. It is well-recognized that
since a seller is more knowledgeable about the assets he is selling, he may design the derivative
advantageously for himself by suitable cherry-picking. However since securitization with derivatives
usually involves tranching (see Section 3 and Appendix A), and the seller retains the junior tranche
which takes the first losses, it was felt that this is sufficient deterrence against cherry-picking
(ignoring for now the issue of how the seller can be restrained from later selling the junior tranche).
We will show below that this assumption is incorrect in our setting, and even tranching is no
safeguard against cherry-picking.

Would a lemons law for derivatives (or an equivalent in terms of a standard clauses in CDO
contracts) remove the problems identified in this paper? The paper suggests (see Section F.4 in the
appendix.)) a surprising answer: in many models, even the problem of detecting the tampering ex
post may be intractable. The paper also contains some results at the end (see Section 5) that suggest
that the problems identified in this paper could be mitigated to a great extent by using certain
exotic derivatives whose design (and pricing) is influenced by computer science ideas. Though these
are provably tamper proof in our simpler model, it remains to be seen if they can find economic
utility in more realistic settings.

1.1 An illustrative example

Consider a seller with N assets (e.g., “mortgages”) each of which pays either 0 or 1 with probability
1/2 independently of all others (e.g., payoff is 0 iff the mortgage defaults). Thus a fair price for
the entire bundle is N/2. Now suppose that the seller has some inside information that an n-sized
subset S of the assets are actually “junk” or “lemons” and will default (i.e., have zero payoff) with
probability 1. In this case the value of the entire bundle will be (N − n)/2 = N/2− n/2 and so we

3Note that debt-rating agencies such as Moody’s or S&P currently use simple simulation-based approaches [WA05],
and hence may fail to detect tampering even in the parameter regime where the densest subgraph is easy.

3

say that the “lemon cost” in this setting is n/2.
In principle one can use derivatives to significantly ameliorate the lemon cost. In particular

consider the following: seller creates M new financial products, each of them depending on D of
the underlying assets.4 Each one of the M products pays off N/(3M) units as long as the number
of assets in its pool that defaulted is at most D/2 + t

√
D for some parameter t (set to be about√

logD), and otherwise it pays 0. Henceforth we call such a product a “Binary CDO”.5 Thus, if
there are no lemons then the combined value of these M products, denoted V , is very close to N/3.

One can check (see Section 2) that if the pooling is done randomly (each product depends on
D random assets), then even if there are n lemons, the value is still V − o(n), no matter where
these lemons are. We see that in this case derivatives do indeed help significantly reduce the lemon
cost from n to o(n), thus performing their task of allowing a party to sell off the least information-
sensitive portion of the risk.

However, the seller has no incentive to do the pooling completely randomly because he knows
S, the set of lemons. Some calculations show that his optimum strategy is to pick some m of the
CDOs, and make sure that the lemon assets are overrepresented in their pools—to an extent about√
D, the standard deviation, just enough to skew the probability of default. (Earlier we described

this colloquially as “swinging the election.”)
Clearly, a fully rational (i.e., computationally unbounded) buyer can enumerate over all possible

n-sized subsets of [N] and verify that none of them are over-represented, thus ensuring a lemon
cost of o(n). However, for a real-life buyer who is computationally bounded, this enumeration
is infeasible. In fact, the problem of detecting such a tampering is equivalent to the so-called
hidden dense subgraph problem, which computer scientists believe to be intractable (see discussion
below in Section 1.2). Moreover, under seemingly reasonable assumptions, there is a way for
the seller to “plant” a set S of such over-represented assets in a way that the resulting pooling
will be computationally indistinguishable from a random pooling. The bottom line is that under
computational assumptions, the lemon cost for polynomial time buyers can be much larger than n.
Thus introducing derivatives into the picture amplifies the lemon cost instead of reducing it!

Can the cost of complexity be mitigated? In Akerloff’s classic analysis, the no-trade outcome
dictated by lemon costs can be mitigated by appropriate signalling mechanism —e.g., car dealers
offering warranties to increase confidence that the car being sold is not a lemon. In the above setting
however, there seems to be no direct way for seller to prove that the financial product is untampered.
(It is believed that there is no simple way to prove the absence of a dense subgraph; this is related
to the NP 6= coNP conjecture.). Furthermore, we can show that for suitable parameter choices
the tampering is undetectable by the buyer even ex post. The buyer realizes at the end that the
financial products had a higher default rate than expected, but would be unable to prove that this
was due to the seller’s tampering. (See Section F.4 in the appendix.) Nevertheless, we do show in
Section 5 that one could use Computer Science ideas in designing derivatives that are tamperproof
in our simple setting.

4We will have MD � N and so the same asset will be contained in more than one product. In modern finance
this is normal since different derivatives can reference the same asset. But that one can also think of this overlap
between products as occurring from having products that contain assets that are strongly correlated (e.g., mortgages
from the same segment of the market). Note that while our model may look simple, similar results can be proven
in other models where there are dependencies between different assets (e.g., the industry standard Gaussian copula
model), see discussion in Section A.1.

5This is a so-called synthetic binary option. The more popular collateralized debt obligation (CDO) derivative
behaves in a similar way, except that if there are defaults above the threshold (in this case D/2+t

√
D) then the payoff

is not 0 but the defaults are just deducted from the total payoff. We call this a “Tranched CDO”. More discussion
of binary CDOs appears in Appendix A.1.

4

1.2 The cost of complexity: definitions and results

We now turn to formally defining the concept of “lemon cost”, and stating our results. For any
derivative F on N inputs, input distribution X over {0, 1}N , and n ≤ N , we define the lemon cost
of F for n junk assets as

∆(n) = ∆F,X(n) = E[F (X)]− min
S⊆[N],|S|=n

E[F (X)|Xi = 0∀i ∈ S] ,

where the min takes into account all possible ways in which seller could “position” the junk assets
among the N assets while designing the derivative. (We’ll often drop the subscripts F,X when they
are clear from context.) The lemon cost captures the inefficiency introduced in the market due to
the existence of “lemons” or junk assets. For example, in the Akerlof setting, if half the sellers are
honest and have no junk assets, while half of them have n junk assets which they naturally place
in the way that minimize the yield of the derivative, then a buyer will pay V − ∆(n)/2 for the
derivative, where V is the value in the junk-free case.6 Hence the buyer’s valuation will have to be
roughly ∆(n) above the seller’s for trade to occur.

Our results are summarized in Table 1, which lists the lemon cost for different types of financial
products. To highlight the effect of the assumption about buyers having bounded computational
power (“feasibly rational”) we also list the lemon cost for buyers with infinite computational power
(“fully rational”). Unsurprisingly, without derivatives the buyer incurs a lemon cost of n. In the
“Binary CDO” setting described in the illustrative example, things become interesting. It turns
out that using exponential time computation the buyer can verify that the CDO was properly
constructed, in which case the cost to the buyer will be actually much smaller than n, consistent
with the received wisdom that derivatives can insulate against asymmetric information. But, under
the computational complexity assumptions consistent with the current state of art, if the buyer is
restricted to feasible (i.e., polynomial time) computation, then in fact he cannot verify that the
CDO was properly constructed. As a consequence the cost of the n junk assets in this case can in
fact be much larger than n. In a CDO2 (a CDO comprised of CDO’s, see Section 4) this gap can
be much larger with essentially zero lemon cost in the exponential case and maximal cost in the
polynomial case.

Parameters and notation. Throughout the paper, we’ll use the following parameters. We say
that an (M,N,D) graph is a bipartite graph with M vertices on one side (which we call the “top”
side) and N on the other (“bottom”) side, and top degree D. We’ll often identify the bottom part
with assets and top part with derivatives, where each derivative is a function of the D assets it
depends on. We say that such a graph G contains an (m,n, d) graph H, if one can identify m top
vertices and n bottom vertices of G with the vertices of H in a way that all of the edges of H will
be present in G. We will consider the variant of the densest subgraph problem, where one needs to
find out whether a given graph H contains some (m,n, d) graph.

Densest subgraph problem. Fix M,N,D,m, n, d be some parameters. The (average case,
decision) densest subgraph problem with these parameters is to distinguish between the following
two distributions R and D on (M,N,D) graphs:

• R is obtained by choosing for every top vertex D random neighbors on the bottom.

• P is obtained by first choosing at random S ⊂ [N] and T ⊆ [M] with |S| = n, |T | = m, and
then choosing D random neighbors for every vertex outside of T , and D−d random neighbors

6A similar observation holds if we assume the number of junk assets is chosen at random between 0 and n.

5

Model Lemon cost Reference
Derivative-free n
binary CDO, exp time ∼ n(N/M

√
D)� n Theorem 2

binary CDO, poly time ∼ n
√
N/M � n Theorem 2

tranched CDO, exp time ∼ n(N/MD) Theorem 3
tranched CDO, poly time ∼ n(

√
N/MD) Theorem 3

binary CDO2, exp time 0 Theorem 4
binary CDO2, poly time N/4 Theorem 4
tranched CDO2, exp time 0 Theorem 5
tranched CDO2, poly time ∼ n(

√
N/MD) Theorem 5

Table 1: Cost of n junk assets in different scenarios, for N assets, and CDO of M pools of size D
each. ∼ denotes equivalence up to low order terms. 0 means the term tends to 0 when N goes to
infinity. See the corresponding theorems for the exact setting of parameters.

for every vertex in T . We then choose d random additional neighbors in S for every vertex
in T .

Hardness of this variant of the problem was recently suggested by Applebaum et al [ABW09]
as a source for public key cryptography7. The state of art algorithms for both the worst-case and
average-case problems are from a recent paper of Bhaskara et al [BCC+09]. Given their work, the
following assumption is consistent with current knowledge:

Densest subgraph assumption. Let (N,M,D, n,m, d) be such that N = o(MD), (md2/n)2 =
o(MD2/N) then there is no ε > 0 and poly-time algorithm that distinguishes between R and P
with advantage ε.

Since we are not proposing a cryptosystem in this paper, we chose to present the assumption
in the (almost) strongest possible form consistent with current knowledge, and see its implications.
Needless to say, quantitative improvements in algorithms for this problem will result in correspond-
ing quantitative degradations to our lower bounds on the lemon cost. In this paper we’ll always set
d = Õ(

√
D) and set m to be as large as possible while satisfying (md2/n)2 = o(MD2/N), hence

we’ll have m = Õ(n
√
M/N).

1.3 Comparison with DeMarzo(2005)

DeMarzo (2005) (and earlier, DeMarzo and Duffie (1999)) considers a simple model of how CDOs
can help ameliorate asymmetric information effects. Since we show that this conclusion does not
always hold, it may be useful to understand the differences between the two approaches. The full
version of this paper will contain an expanded version of this section.

DeMarzo assumes that a seller has N assets, and the yield Yi of the ith asset is Xi + Zi where
both Xi, Zi are random variables. At the start, seller has seen the value of each Xi and buyer
hasn’t —this is the asymmetric information. Seller prefers cash to assets, since his discount rate
is higher than the one of the potential buyers. If the seller were to sell the assets directly, he can
only charge a low price since potential buyers are wary that the seller will offer primarily lemons

7Applebaum et al used somewhat a different setting of parameters than ours, with smaller planted graphs. We
also note that their cryptosystem relies on a second assumption in addition to the hardness of the planted densest
subgraph.

6

(assets with low Xi) to the buyer. DeMarzo (2005) shows that it is optimal for the seller to first
bundle the assets and then tranche them in a single CDO. The seller offers the buyer the senior
tranche and the retains the riskier junior tranch. Since the seller determines the threshold of the
senior tranch, he determines the faction of the cash flow stream he can sell off. Selling off a smaller
fraction is costly for the seller, but it signals to the buyer that his private information

∑
iXi is

high. Overall, tranching leads to a price at which seller is able to sell his assets at a better price
and the seller is not at a disadvantage because the lemon costs go to 0 as N →∞.

Our model can be phrased in DeMarzo’s language, but differs in two salient ways First, we
assume that instead of N assets, there are N asset classes where seller holds t iid assets in each
class. Some classes are “lemons”, and these are drawn from a distribution known both to seller
and buyer. These have significantly lower expected yield. Seller knows the identity of lemons, but
buyers only knows the prior distribution. Second, we assume that instead of selling a single CDO,
the seller is offering M CDOs. Now buyer (or buyers) must search for a “signal” about seller’s
private valuation by examining the M offered CDOs. DeMarzo’s analysis has no obvious extension
to this case because this signal is far more complex than in the case of a single CDO, where all
assets have to be bundled into a single pool and the only parameter under seller’s control is the
threshold defining the senior tranche.

If buyers are fully rational and capable of exponential time computations, then DeMarzo’s essen-
tial insight (and conventional wisdom) about CDOs can be verified:lemon costs do get ameliorated
by CDOs. Seller randomly distributes his assets into M equal sized pools and defines the senior
tranche identically in all of them. Thus his “signal” to buyers consists of the partition of assets
into pools, and the threshold that defines the senior tranche. For a fully rational buyer this signal
turns out to contain enough information: he only needs to verify that there is no dense subgraph
in the graph that defines the CDOs. If a dense subgraph is found, the buyers can assume that
the seller is trying to gain advantage by clustering the lemons into a small number of CDOs (as
in our construction), and will lower their offer price for the senior tranche accordingly. If no dense
subgraph is found then buyers can have confidence that the small number of lemons are more or less
uniformly distributed among the M tranches, and thus have only a negligible effect on the senior
tranche. Assuming the number of lemons is not too large, the lemon costs go to 0 as N → ∞,
confirming DeMarzo’s findings in this case. Thus lack of a dense subgraph is a “signal” from seller
to buyer that there is no reason to worry about the lemons in the CDOs.

Of course, detecting this “signal” is computationally difficult! If buyers are computationally
bounded then this signalling cannot work, and indeed our assumption about the densest subgraph
problem implies that the buyers cannot detect the presence of a dense subgraph (or its absence)
with any reasonable confidence. Thus lemon costs persist. (A more formal statement of this
result involves showing that for every possible polynomial-time function that represents the buyer’s
“interpretation” of the signal, the seller has a strategy of confusing it by planting a dense subgraph.)

Ex post indetectability At the superficial level described above, the seller’s tampering is de-
tectable ex post. In Section F.4.1 in the appendix we describe how a small change to the above
model makes the tampering undetectable ex post.

2 Lemon Cost Bounds for Binary Derivatives

In this section we formalize the illustrative example from the introduction. We will calculate the
lemon cost in “honest” (random) binary derivatives, and the effect on the lemon cost of planting
dense subgraphs in such derivatives.

7

Recall that in the illustrative example there are N assets that are independently and identically
distributed with probability 1/2 of a payoff of zero and probability 1/2 of a payoff of 1. In our
setting the seller generates M binary derivatives, where the value of each derivative is based on
the D of the assets. There is some agreed threshold value b < B/2, such that each derivative pays
0 if more than D+b

2 of the assets contained in it default, and otherwise pays some fixed amount
V = D−b

2D
N
M (in the example we used V = N/(3M) but this value is the maximal one so that,

assuming each asset participates in the same number of derivatives, the seller can always cover the
payment from the underlying assets).

Since each derivative depends on D independent assets, the number of defaulted assets for each
derivative is distributed very closely to a Gaussian distribution as D gets larger. In particular,
if there are no lemons, every derivative has exactly the same probability of paying off, and this
probability (which as b grows becomes very close to 1) is closely approximated by Φ(b

2σ) where Φ is
the cumulative distribution function of Gaussian (i.e., Φ(a) =

∫ a
−∞

1√
2π
e−x

2/2dx), b is our threshold

parameter and σ ∼
√
D is the standard deviation. Using linearity of expectation one can compute

the expected value of all M derivatives together, which will be about N D−b
2D

N
M ∼ N/2. Note that

this calculation is the same regardless of whether the graph is random or not.
We now compute the effect of n lemons (i.e., assets with payoff identical to 0) on the value of

all the derivatives. In this case the shape of the pooling will make a difference. It is convenient to
view the relationship of derivatives and assets as a bipartite graph, see Figure 1. Derivatives and
assets are vertices, with an edge between a derivative and an asset if the derivative depends on this
asset. Note that this is what we called an (M,N,D) graph.

Figure 1: Using a bipartite Graph to represent assets and derivatives. There are M vertices on
top corresponding to the derivatives and N vertices at the bottom corresponding to assets. Each
derivative references D assets.

To increase his expected profit seller can carefully design this graph, using his secret information.
The key observation is that though each derivative depends upon D assets, in order to substantially
affect its payoff probability it suffices to fix about σ ∼

√
D of the underlying assets. More precisely,

if t of the assets contained in a derivative are lemons, then the expected number of defaulted assets
in it is D+t

2 , while the standard deviation is
√
D − t/2 ≈

√
D/2. Hence the probability that this

derivative gives 0 return is Φ(t−b2σ) which starts getting larger as t increases. This means that the
difference in value between such a pool and a pool without lemons is about V · Φ(t−b2σ).

Suppose the seller allocates ti of the junk assets to the ith derivative. Since each of the n junk
assets are contained in MD/N derivatives, we have

∑M
i=1 ti = nMD

N . In this case the lemon cost
will be

V ·
M∑
i=1

Φ(
ti − b

2σ
)

Since the function Φ(ti−b2σ) is concave when t < b, and convex after that the optimum solution
will involve all ti-s to be either 0 or k

√
D for some small constant k. (There is no closed form for

k but it is easily calculated numerically; see Section B.1.)

8

Therefore the lemon cost is maximized by choosing some m derivatives and letting each of them
have at least d = k

√
D edges from the set of junk assets. In the bipartite graph representation, this

corresponds to a dense subgraph, which is a set of derivatives (the manipulated derivatives) and a
set of assets (the junk assets) that have more edges between them than expected. This precisely
corresponds to the pooling graph containing an (m,n, d) subgraph - that is a dense subgraph (we
sometimes call such a subgraph a “booby trap”). When the parameters m, n, d are chosen carefully,
there will be no such dense subgraphs in random graphs with high probability, and so the buyer
will be able to verify that this is the case. On the other hand, assuming the intractability of
this problem, the seller will be able to embed a significant dense subgraph in the pooling, thus
significantly raising the lemon cost.

Note that even random graphs have dense subgraphs. For example, when md = n, any graph
has an (m,n, d) subgraph— just take any m top vertices and their n = md neighbors. But these
are more or less the densest subgraphs in random graphs, as the following theorem, proven in
Section B, shows:

Theorem 1. When n � md, dN
Dn > (N + M)ε for some constant ε, there is no dense subgraph

(m,n, d) in a random (M,N,D) graph with high probability.

The above discussion allows us to quantify precisely the effect of an (m,n, d)-subgraph on the
lemon cost. Let p ∼ Φ(−b/2σ) be the probability of default. The mere addition of n lemons (regard-
less of dense subgraphs) will reduce the value by about Φ′(−b/2σ)nD2N

1
σ ·N/2 = O(e−(b/2σ)2/2n

√
D)

which can be made o(n) by setting b to be some constant time
√
D logD. The effect of an (m,n, d)

subgraph on the lemon cost is captured by the following theorem (whose proof is deferred to Ap-
pendix B):

Theorem 2. When d− b > 3
√
D, n/N � d/D, an (m,n, d) subgraph will generate an extra lemon

cost of at least (1− 2p− o(1))mV ≈ n
√
N/M .

Assume M � N � M
√
D and set m = Θ̃(n

√
M/N) so that a graph with a planted (m,n, d)

subgraph remains indistinguishable from a random graph under the densest subgraph assumption.

Setting b = 2σ
√

log MD
N the theorem implies that a fully rational buyer can verify that nonexistence

of dense subgraphs and ensure a lemon cost of n N
2M
√
D

= o(n), while a polynomial time buyer will

have lemon cost of n
√
N/M = ω(n).

3 Non-Binary Derivatives and Tranching

We showed in Section 2 the lemon cost of binary derivatives can be large when computational
complexity is considered. However, binary derivatives are less common than securities that use
tranching, such as CDOs (Collateralized debt obligations). In a normal securitization setting, the
seller of assets (usually a bank) will offload the assets to a shadow company called the special
purpose vehicle or SPV. The SPV recombines these assets into notes that are divided into several
tranches ordered from the most senior to the most junior (often known as the “equity” or “toxic
waste” tranche). If some assets default, the junior-most tranche takes the first loss and absorb all
losses until it’s “wiped out” in which case losses start propagating up to the more senior tranches.
Thus the most senior tranche is considered very safe, and often receives a AAA rating.

For simplicity here we consider the case where there are only two tranches, senior and junior.
If the percentile of the loss is below a certain threshold, then only people who owns junior tranche
suffers the loss; if the loss is above the threshold, then junior tranche lose all its value and senior

9

tranche is responsible for the rest of the loss. Clearly, senior tranches have lower risk than the
whole asset. We will assume that seller retains the junior tranche, which is normally believed to
signal his belief in the quality of the asset. Intuitively, such tranching should make the derivative
less vulnerable to manipulation by seller compared to binary CDOs, and we’ll quantify that this
is indeed true. Nevertheless, we show that our basic result in Section 2 —that the lemon cost is
much larger when we take computational complexity into account—is unchanged.

We adapt the parameters and settings in Section 2, the only difference is that we replace our
binary derivative with the senior tranche derivative, that in the event of T > D+b

2 defaults, does
not have a payoff of 0, but rather a payoff of D − T (and otherwise has a payoff of V = D−b

2 as in
the binary case). Without lemons, the expected value of this derivative is approximately the same
as the binary one, as the probability of T > D+b

2 is very small.
The first observation regarding tranching is that in this case the lemon cost can never be larger

than n, since changing any assignment to the assets by making one asset default can cause at most
a total loss of one unit to the sum of all derivatives. In fact we will show that in this case for
both the exponential-time and polynomial-time buyer, the lemon cost is less than n. But there
will still be a difference between the two case, specifically we’ll have that the cost is δn in the
exponential-time case and

√
δn in the polynomial-time case, where δ ∼ N

MD , as is shown by the
following theorem (whose proof is deferred to Appendix C):

Theorem 3. When b ≥ 3
√
D, d − b ≥ 3

√
D, d <

√
D logD, n/N � d/D, the lemon cost for a

graph with an (m,n, d) subgraph is εn+ Θ̃(σDmV), where ε = O(be−(b/2σ)2/2/σ).

Therefore in CDOs, setting b sufficiently large the lemon cost for polynomial time buyers is
Θ(n

√
N/MD), while the lemon cost for exponential time buyers is Θ(n ·N/MD). Since MD > N ,

the lemon cost for polynomial time buyer is always larger. Nevertheless, the gap in lemon cost for
tranched CDO’s is smaller than the gap for the binary CDO.

4 Lemon Cost for CDO2

Though CDOs are the most common derivatives, there is still significant trade in a more complex
derivative called CDO2, which is a CDO of CDOs. (Indeed, there is trade even in CDO3, which are
CDOs of CDO2, and more generally there are CDOn!) In this section we’ll examine CDO2’s using
lemon cost and computational complexity, and show that it is more vulnerable to dense subgraphs
than the simple CDO. The effect is more pronounced in CDO2 that is a binary CDO of binary
CDOs considered in Section 2. We defer the proofs of the theorems below to Appendix D.

For this section to simplify parameters we set M = N0.8, D = N0.3, n = N0.8, m = N0.7,
d = 6

√
D. For the first level of CDOs we put the threshold at D+b

2 defaults where b = 3
√
D.

One can easily check that these parameters satisfy all the requirements for any dense subgraphs to
escape detection algorithms.

First we consider binary CDO2s, which are easier to analyze. The binary CDO2 takes a set
of binary CDOs as described in Section 2, and combines them to make a single derivative. The
CDO2 gives return V = N/4 when the number of binary CDOs that gives no return is more than
a threshold T (which we will set later, T will be small so that the CDO2 is securitized and can be
paid for out of the seller’s profits from the N assets) and gives no return otherwise. From Section
2 we know when buyer has unbounded computational power and consequently there are no “booby
traps”, the expected number of CDOs that gives no return is roughly pM + εn

√
D + nM

√
D/N

where p = Φ(−3) < 0.2%; while for polynomial time buyer, the expected number of CDOs that

10

gives no return can be as large as pM + εn
√
D + n

√
M/N . We denote the former as E[exp] and

the latter as E[poly].

Theorem 4. In the binary CDO2 setting, when m2 � M2D2

N , T = 1
2(E[poly] + E[exp]), the lemon

cost for polynomial time buyer is (1− o(1))N/4, while the lemon cost for exponential time buyer is
only N/4e−m

2N/M2D2
= O(e−N

ε
) where ε is a positive constant.

Now we consider the more popular CDO2s, which uses tranching. At the first level we use the
same way of dividing the CDOs into two tranches as in Section 3. Then we collect all the senior
tranche of the CDOs to make a CDO2. Since each senior tranche of CDO has value D−b

2D
N
M , the

total value of the CDO2 is V = N D−b
2D . The CDO2 is also splitted into two tranches, and the

threshold T is determined later. The buyers buy the senior tranche of CDO2 and seller retains the
junior tranche.

Use E[exp] to denote the expected loss of CDO2 for exponential time buyers, E[poly] to denote
the expected loss of CDO2 for polynomial time buyers, we have the following theorem.

Theorem 5. In the CDO2 with tranching case, when m2d2 �M2D2/N , T = 1
2(E[poly] + E[exp]),

the lemon cost for polynomial time buyers is Θ(mdN/MD) , while the lemon cost for exponential
time buyer is at most mdN/MDe−m

2d2N/M2D2
= O(e−N

ε
) where ε is a positive constant.

In conclusion, for both binary CDO2s and CDO2s with tranching, the lemon cost for polynomial
time buyers can be exponential times larger than the lemon cost for exponential time buyers. In
particular, the lemon cost of binary CDO2s for polynomial time buyers can be as large as N/4— a
large fraction of the total value of the asset.

5 Design of Derivatives Resistant to Dense Subgraphs

The results of this paper show how the usual methods of CDO design are susceptible to manipulation
by sellers who have hidden information. This raises the question whether some other way of CDO
design is less susceptible to this manipulation. This section contains a positive result, showing
more exotic derivatives that are not susceptible to the same kind of manipulation. Note that this
positive result is in the simplified setup used in the rest of the paper and it remains to be seen how
to adapt these ideas to more realistic scenarios with more complicated input correlations, timing
assumptions, etc.

The reason current constructions (e.g., the one in our illustrative example) allow tampering is
that the financial product is defined using the sum of D inputs. If these inputs are iid variables then
the sum is approximately gaussian with standard deviation

√
D, and thus to shift the distribution it

suffices to fix only about
√
D variables. This is too small for buyers (specifically, the best algorithms

known) to detect.
The more exotic derivatives proposed here will use different functions, which cannot be shifted

without fixing a lot of variables. This means that denser graphs will be needed to influence them,
and such graphs could be dense enough for the best algorithms to find them. We briefly outline
the constructions — details can be found in Appendix E.

The XOR function. The XOR function on D variables is of course very resilient to any setting
of much less than D variables (even if the variables are not fair but rather biased coins). Hence we
can show that an XOR based derivative will have o(n) lemon cost even for computational buyers.
However, it’s not clear that this function will be of economic use, as it’s not monotone, and also
could be sucseptible to a timing attack, in which the seller will manipulate the last asset after the
outcome all other ones is known.

11

Tree of majorities. Another, perhaps more plausible candidate, is obtained by applying ma-
jorities of 3 variables recursively for depth k, to obtain a function on 3k variables that cannot be
influenced by o(2k) �

√
3k variables. In this case we can show that the added resiliency of the

function allows to detect dense subgraph ex-post— after the outcome of all assets is known. This is
a non-trivial and possibly useful property (see discussion in Section F.4) as one may be able to add
to the contract a clause saying that the detection of a dense subgraph whose input variables mostly
ended up yielding 0 incurs a sizeable payment from seller to buyer. Alternatively, this “penalty”
may involve possibility of law enforcement or litigation.

6 Conclusions

Most analysis of the current financial crisis blames the use of “faulty models” in pricing deriva-
tives, and this analysis is probably correct. Coval et al. [CJS09] give a readable account of this
“modelling error”, and point out that buyer practices (and in particular the algorithms used by
rating agencies [WA05]) do not involve bounding the lemon cost or doing any kind of sensitivity
analysis of the derivative other than running Monte-Carlo simulations on a few industry-standard
distributions such as the Gaussian copula. (See also [Bru08].)

However, this raises the question whether a more precise model would insulate the market from
future problems. Our results can be seen as some cause of concern, even though they are clearly
only a first step (simple model, asymptotic analysis, etc.). The lemon problem clearly exists in
real life (e.g., “no documentation mortgages”), and there will always be a discrepancy between
the buyer’s “model” of the assets and the true valuation. Since we exhibit the computational
intractability of pricing even when the input model is known (N −n independent assets and n junk
assets), one fears that such pricing problems will not go away even with better models. If anything,
the pricing problem should only get harder for more complicated models. (Our few positive results
in Section 5 raise the hope that it may be possible to circumvent at least the tampering problem
with better design.) In any case, we feel that from now on computational complexity should be
explicitly accounted for in the design and trade of derivatives.

Several questions suggest themselves.

1. Is it possible to prove even stronger negative results, either in terms of the underlying hard
problem, or the quantitative estimate of the lemon cost? In our model, solving some version
of densest subgraph is necessary and sufficient for detecting tampering. But possibly by
considering more lifelike features such as timing conditions on mortgage payments, or more
complex input distributions, one can embed an even more well-known hard problem. Similarly,
it is possible that the lemon costs for say tranched CDOs are higher than we have estimated.

2. Is it possible to give classes of derivatives (say, by identifying suitable parameter choices) where
the cost of complexity goes away, including in more lifelike scenarios? This would probably
involve a full characterization of all possible tamperings of the derivative, and showing that
they can be detected.

3. If the previous quest proves difficult, try to prove that it is impossible. This would involve
an axiomatic characterization of the goals of securitization, and showing that no derivative
meets those goals in a way that is tamper-proof.

Acknowledgements. We thank Moses Charikar for sharing with us the results from the
manuscript [BCC+09].

12

References

[AB09] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

[ABW09] B. Applebaum, B. Barak, and A. Wigderson. Public key cryptography from different
assumptions. Available from the authors’ web pages. Preliminary version as cryptology
eprint report 2008/335 by Barak and Wigderson., 2009.

[Ake70] G. Akerlof. The market for “lemons”: quality uncertainty and the market mechanism.
The quarterly journal of economics, pages 488–500, 1970.

[BC97] A. Bernardo and B. Cornell. The valuation of complex derivatives by major investment
firms: Empirical evidence. Journal of Finance, pages 785–798, 1997.

[BCC+09] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detect-
ing high log-density: An o(n1/4)-approximation for densest k-subgraph. Manuscript in
preparation, 2009.

[Bru08] M. Brunnermeier. Deciphering the 2007-08 liquidity and credit crunch. Journal of
Economic Perspectives, 23(1):77–100, 2008.

[CJS09] J. Coval, J. Jurek, and E. Stafford. The economics of structured finance. Journal of
Economic Perspectives, 23(1):3–25, 2009.

[DeM05] P. DeMarzo. The pooling and tranching of securities: A model of informed intermedia-
tion. Review of Financial Studies, 18(1):1–35, 2005.

[Duf07] D. Duffie. Innovations in credit risk transfer: implications for financial stability. BIS
Working Papers, 2007.

[FPK01] U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem. Algorithmica,
29(3):410–421, 2001.

[FPRS07] P. Flener, J. Pearson, L. G. Reyna, and O. Sivertsson. Design of financial cdo squared
transactions using constraint programming. Constraints, 12(2):179–205, 2007.

[GSe02] G. Gigerenzer, R. Selten, and eds. Bounded rationality : the adaptive toolbox. MIT
Press, 2002.

[Kho04] S. Khot. Ruling out PTAS for graph min-bisection, densest subgraph and bipartite
clique. In FOCS, pages 136–145, 2004.

[McD03] R. McDonald. Derivatives markets. Addison-Wesley Reading, MA, 2003.

[Mou08] C. Mounfield. Synthetic CDOs: Modelling, Valuation and Risk Management. Cambridge
Univ Pr, 2008.

[WA05] M. Whelton and M. Adelson. CDOs-squared demystified. Nomura Securities, February
2005.

13

A Real world financial derivatives

In this appendix we provide a quick review of financial derivatives. See the book [McD03] for
a general treatment and [Mou08] for a treatment of the practical aspects of evaluating the kind
of derivatives discussed here. The papers [CJS09, Bru08] discuss the role derivatives played in
bringing about the recent economic crisis. In Section A.1 we compare the features of our model
with the kind of derivatives used in practice.

A derivative is just a contract entered between two parties to exchange payments based on some
events to underlying assets. Derivatives are extremely general: the events can be discrete events
such as default or credit rating change, as well as just market performance. The assets themselves
can be a company, a loan, or even another derivative. Neither party has to actually own the assets
in question. The payment structure can also be fairly complex, and can also depend on the timing
of the event.

A relatively simple example of a derivative is a credit default swap (CDS), in which Party A
“insures” Party B against default of a third Party X. Thus an abstraction of a CDS (ignoring timing
of defaults) is that if we let X be a random variable equalling 0 if Party X defaults (say in one year)
and equal to 1 otherwise, then Party A pays a certain amount iff X = 0. Naturally, the value that
B will pay A for this contract will be proportional to the estimated probability that X defaults.
We note that despite the name “insurance”, there is no requirement that Party B holds a bond
of Party X, and so it is possible for Party B to “insure” an asset it does not own, and there valid
economic reasons why it would want to do so. Indeed there are entities X for which the volume of
CDS derivatives that reference X far exceeds the total of all X’s assets and outstanding debts.

A collateralized debt obligation (CDO),8 can be thought of as a generalization of CDS that
references many, say D parties X1,...,XD. Again we say that Xi is equal to 0 if Party Xi defaults, and
to 0 otherwise, and this time Party B pays Party A Fα,β(X1, . . . , XD) units, for some 0 ≤ α < β ≤ 1,
where Fα,β is defined as follows:

Fα,β(X1, . . . , XD) =


0 S ≤ αD
1 S ≥ βD
(S − αD)/(β − α) S ∈ (αD, βD)

where S =
∑D

i=1Xi. That is, Party A takes on the risk for a certain tranche of the losses, and
will get paid for all income above the first α fraction until it reach the β fraction. (In finance
parlance, looking at losses rather than income, 1 − β and 1 − α are known as the “attachment”
and “detachment” points of the tranche. If α = 0 the tranche is called “senior”, while if β = 1 the
tranche is called “equity” sometimes also known as “toxic waste”, tranches with 0 < α < β < 1 are
known as “mezzanine”.) We also consider the binary CDO variant Fα. that outputs 0 if S < αD
and 1 if S ≥ αD. (These can correspond to discrete events such as credit rating change for the
tranche.)

CDO’s are an extremely popular financial derivative. One reason is that owing to the law of
large numbers, even if the probability of default of each individual asset is not very small, if all of
them are independent then the probability that a relatively senior tranche (with 1− β larger than
this probability) will lose money is extremely small. Hence these senior tranche and even some
mezzanine tranches were considered a very safe investment and given high credit rating like AAA.

8For simplicity we consider a particular kind of a CDO - what’s known a single tranche CDO. Also, at the current
level of abstraction it does not matter what are the underlying assets, or if it’s a so called “synthetic” or “asset-backed”
CDO.

14

In particular CDO’s are used to package together relatively high risk (e.g., subprime) mortgage
loans and pass them on to risk-averse investors.

A.1 Our construction versus real-life derivatives

We now discuss on a more technical level the relation of our constructions to commonly used types
of derivatives.

Role of random graph Real-life constructions do not use a random graph. Rather, seller tries
to put together a diversified portfolio of assets which one can hope are “sufficiently independent.”
We are modeling this as a random graph. Many experts have worried about the “adverse selection”
or “moral hazard” problem inherent because the seller could cherry-pick assets unbeknownst to
buyer. It is generally hoped that this problem would not be too severe since the seller typically
holds on to the junior tranche, which takes the first losses. Unfortunately, this intuition is shown
to be false in our model.

Binary vs tranched. Though we did have results for lemon costs of tranched CDOs, the results
for binary CDOs were stronger. This suggests firstly that binary CDOs may be a lot riskier than
tranched CDOs, which was perhaps not quantified before in the same way. Second, the results
for binary CDOs should still be important since they can be viewed as an abstraction for a debt
insurance (i.e., CDS). If one buys a CDS (tranched) for a portfolio, then even though the tranching
suggests a continuous cost incurred when the portfolio makes losses, in practice the cost is quite
discontinuous as soon as the portfolio makes any loss, since this can cause rating downgrade (and
subsequent huge drop in price), litigation, and other costs similar to that of a bankruptcy. Thus
even a tranched CDS is a lot more binary in character in this setting.

One significant aspect we ignored in this work is that in standard derivatives the timing of
defaults makes a big difference, though this seems to make a negative results such as ours only
stronger. It is conceivable that such real-life issues could allow one to prove an even better hardness
result.

Asymptotic analysis. In this paper we used asymptotic analysis, which seems to work best to
bring out the essence of computational issues, but is at odds with economic practice and literature,
that use fixed constants. This makes it hard to compare our parameters with currently used ones
(which vary widely in practice). We do note that algorithms that we consider asymptotically
“efficient” such as semi definite programming, may actually be considered inefficient in current
banking environment. Some of results hold also for a threshold of a constant number (e.g. 3) of
standard deviations, as opposed to

√
logD (see Section F.4), which is perhaps more in line with

economic practice in which even the senior most tranche has around 1% probability of incurring a
loss (though of course for current parameters

√
logD ≤ 3).

The role of the model The distribution we used in our results, where every asset is either
independent or perfectly correlated is of course highly idealized. It is more typical to assume in
finance that even for two dissimilar assets, the default probability is slightly correlated. However,
this is often modeled via a systemwide component, which is easy to hedge against (e.g. using
an industry price index), thus extracting from each asset a random variable that is independent
for assets in different industries or markets. In any case, our results can be modified to hold in
alternative models such as the Gaussian copula. (Details will appear in the final version.)

15

B Omitted proofs from Section 2

Theorem 1 (Restated). When n � md, dN
Dn > (N + M)ε for some constant ε, there is no dense

subgraph (m,n, d) in a random (M,N,D) graph with high probability.

Proof. Let Xi,j be the random variable that indicates whether there’s an edge between i-th asset
and j-th derivative. For simplicity we assume Xi,j are independent random variables which has
value 1 with probability D/N (actually the random variables Xi,j are negatively correlated, but
negative correlations will only make the results we are proving more likely to be true). Pick any
set A of assets of size n, B of derivatives of size m. The probability that there are more than md
edges between A and B is the probability of X =

∑
i∈A,j∈BXi,j ≥ md. Since Xi,j are independent

random variables, and the sum X has expectation µ = mnD/N , by Chernoff Bound,

Pr[X > (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
Here µ = mnD/N , 1 + δ = md/µ = dN

Dn , the probability is at most

Pr[X > (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤ (N +M)−εmd

The number of such sets is
(
N
n

)(
M
m

)
≤ (N +M)n+m, by union bound, the probability that there

exists a pair of sets that has more than md edges between them is at most (N +M)n+m−md, which
is much smaller than 1 by the assumption that n � md. Therefore, with high probability there
will be no dense subgraphs within a random graph.

Theorem 2 (Restated). When d− b > 3
√
D, n/N � d/D, an (m,n, d) subgraph will generate an

extra lemon cost of at least (1− 2p− o(1))mV ≈ n
√
N/M .

Proof. For each manipulated derivatives, let Y be the number of defaulted assets, since there are
d assets that come from junk asset set, these d assets will always default, and the expectation of Y
is E[Y] = D+d

2 . Since D is large enough so that the Gaussian approximation holds, Pr[Y ≥ D+b
2] =

1− p.
For non-manipulated derivatives, assume the expected number of defaulted assets is x, then x

satisfy the equation:

m · D + d

2
+ (M −m) · x =

N + n

2N
· MD

N
,

because the LHS and RHS are all expected number of defaulted mini-assets. x ≥ D
2 + n

2N −
md

2M−2m . The probability that the number of defaulted assets is more than D+b
2 is at least Φ(−3−

md
2(M−m)D) = p − Φ′(−3) md

2(M−m)D = p − O(md
2(M−m)D). The expected number of non-manipulated

derivatives that gives no return is at least p(M −m)−O(md2D) = p(M −m)− o(m).
In conclusion, the expected number of derivatives that gives no return is at least pM + (1 −

2p)m− o(m). which is (1−2p− o(1)) smaller than the expectation without dense subgraphs. Thus
the extra lemon cost is (1− 2p− o(1))mV .

16

B.1 Maximizing Profit in Binary Derivative Setting

We provide a more complete analysis than the one in Section 2 of the full optimization problem for
the seller. Recall that his profit is given by

V ′ ·
M∑
i=1

Φ(
ti − b

2δ
),

yet at the same time he is not allowed to put too many edges into the cluster (otherwise
this dense subgraph can be detected). We abstract this as an optimization problem (let b

2δ = a,
xi = ti/2δ):

max
M∑
i=1

Φ(xi − a)

subject to
M∑
i=1

xi = C

xi ≥ 0

As argued in Section 2, each xi should either be 0 or greater than a, so it’s safe to subtract
MΦ(−a) from the objective function. Now the sum of xi’s are fixed, and we want to maximize
the sum of Φ(xi − a) − Φ(−a), clearly the best thing to do is to maximize the ratio between
Φ(xi − a)− Φ(−a) and xi. Let y = Φ(x− a)− Φ(−a), the x that maximize y/x is the point that
satisfies y = x · y′(x), that is

Φ(x− a)− Φ(−a) = x
e−

(x−a)2
2

√
2π

,

when x ≥ a + 3 +
√

4 log a, LHS ≈ 1, RHS < 1 (when a is large this is bounded by
√

4 log a
term, when a is small this is bounded by 3, the constants are not carefully chosen but they are
large enough), so the solution cannot be in this range. When a is a constant, the solution x lies
between a and a+ 3 +

√
4 log a. Therefore, when a us a constant, the best thing to do is to set all

non-zero xi’s to a value not much larger than a, in the bipartite graph representation this is just
planting a dense subgraph where each derivatives have O(

√
D) edges.

C Omitted proofs from Section 3

Theorem 3 (Restated). When b ≥ 3
√
D, d − b ≥ 3

√
D, d <

√
D logD, n/N � d/D, the lemon

cost for a graph with an (m,n, d) subgraph is εn+ Θ̃(σDmV), where ε = O(be−(b/2σ)2/2/σ).

Proof. Let Yi be the number of defaulted assets related to i-th product.
If there are no junk assets, each asset may default with probability 1/2. For each product, Yi

is close to a Gaussian with standard deviation σ =
√
D/2 and mean D/2. The expected loss can

be written as:

σ

D
· V ·

∫ −3

−∞

−3− x√
2π

e−
x2

2 dx

17

The value of the integral is a small constant ε = e−4.5
√

2π
− 3Φ(−3) < 10−3.

Valuation when there are n junk assets. When there are n junk assets, the expected value
of each Yi is decreased by nD/2N . Again, because nD/2N is much smaller than 1, the amount
of change in the expected payoff is proportional to nD/2Nσ and the derivative of the function

Γ(x) =
∫ x
−∞

x−y√
2π
e−

y2

2 dy at the point x = −b/2σ. Since

Γ′(x) = −2x
e−x

2/2

√
2π
− Φ(x),

Γ′(−b/2σ) = O(b/2σe−(b/2σ)2/2). The lemon cost would be

M
σ

D
· V · Γ′(−b/2σ) · nD

2Nσ
= O(n · be−(b/2σ)2/2/σ).

Seller’s profit from planting a dense subgraph. Suppose seller plants a dense subgraph
(m,n, d). If the i-th product is in the dense subgraph, then Yi is close to a Gaussian with mean
D+d

2 and with high probability (the same probability 1− p = 99.8%) the senior tranche will suffer
loss. Conditioned on the event that Yi > D+b

2 , the expected amount of loss is

V

D
· (E[Yi|Yi >

D + b

2
]− D + b

2
) ≥ V

D
· (E[Yi]−

D + b

2
) =

3σ
D
V,

therefore the expected loss without conditioning is at least 3(1−p)σ
D V . For the products outside

the dense subgraph, because the expected value of Yi is roughly md/2M smaller (which is md/2Mσ
times standard deviation), the expected loss is also smaller. The amount of change is the propor-
tional to md/2Mσ and the derivative of the function Γ(x) at the point x = −3. The total influence
for all M −m product is roughly md

2σ
σ
DV Γ′(−3) = ε′ σDmV , where ε′ is also a small constant, so this

influence is very small.

D Omitted proofs from Section 4

Theorem 4 (Restated). In the binary CDO2 setting, when m2 � M2D2

N , T = 1
2(E[poly] + E[exp]),

the lemon cost for polynomial time buyer is (1 − o(1))N/4, while the lemon cost for exponential
time buyer is only N/4e−m

2N/M2D2
= O(e−N

ε
) where ε is a positive constant.

Proof. From the results in Section 2 we know E[poly] − E[exp] = Θ(m). Therefore E[poly] − T =
Θ(m) and T − E[exp] = Θ(m).

Let Y be the random variable that’s equal to the number of CDOs that gives no return, let Xi be
the indicator variable that is 1 when i-th CDO gives no return and 0 otherwise. Then Y =

∑M
i=1Xi.

We analyse the concentration of Y about its expectation. Let x1, x2, ..., xN be the indicator variable
for assets that xi is 1 when i-th asset default. Then Y is a function of {xi}, we denote this function
Y = f(x). Since each asset appears in MD/N = N0.1 CDOs, |f(x)− f(x′)| ≤MD/N if x and x′

differ by only 1 position. By McDiarmid’s bound:

Pr[|f(x)− E[f(x)]| > t] ≤ e
− t2∑

c2
i

where ci is the maximal difference in f when the i-th component of x is changed. (here ci = MD/N
for all i, so

∑
c2
i = M2D2/N , for polynomial time buyers

18

Pr[Y ≥ T] = 1− Pr[Y < T] ≥ 1− Pr[|Y − E[poly]| > m] ≥ 1− e−Θ(m2N/M2D2),

similarly, for buyers with unbounded computation time,

Pr[Y ≥ T] ≤ Pr[|Y − E[exp]| > T − E[exp]] ≤ e−Θ(m2N/M2D2).

The lemon cost for this CDO2 is just the probability of loss multiplied by the payoff of CDO2.
Therefore, the lemon cost of exponential time buyer is e−Θ(m2N/M2D2)N/4, which is e−Θ(N0.2) in
the parameters we choose. This is exponentially small, while the lemon cost of polynomial time
buyer can be as large as (1− o(1))N/4.

Theorem 5 (Restated). In the CDO2 with tranching case, when m2d2 �M2D2/N , T = 1
2(E[poly]+

E[exp]), the lemon cost for polynomial time buyers is Θ(mdN/MD) , while the lemon cost for ex-
ponential time buyer is at most mdN/MDe−m

2d2N/M2D2
= O(e−N

ε
) where ε is a positive constant.

Proof. From Section 3 we know E[poly]−E[exp] = Θ(mdN/MD). Since T = 1/2(E[poly]+E[exp]),
E[poly]− T = T − E[exp] = Θ(mdN/MD). Let Xi be amount of loss in the senior tranche of the
i-th CDO, Y =

∑M
i=1Xi, then the senior tranche of CDO2 losses money if and only if Y > T .

Again, view Y as a function of x, where xi’s are indicator variables for assets. The ci’s for
McDiarmid’s bound are all 1, because the 1 unit of loss caused by the default of one asset can only
be transferred and will not be amplified in CDOs with tranching. Therefore, for polynomial time
buyers,

Pr[Y > T] ≥ 1− Pr[|Y − E[poly]| > E[poly]− T] ≥ 1− e−Θ(m2d2N/M2D2),

while for exponential time buyers

Pr[Y > T] ≤ Pr[|Y − E[exp]| > T − E[exp]] ≤ e−Θ(m2d2N/M2D2).

That is, polynomial time buyers almost always loss money, and their lemon cost is (E[poly] −
T) = Θ(mdN/MD), while the lemon cost for exponential time buyer is exponentially small because
the probability of losing even $1 is exponentially small (by the parameters we chose the probability
is e−Θ(N0.5)).

E Derivatives resistant to Dense Subgraphs

In this section we provide details for the dense subgraph resistant derivatives mentioned in Section 5.

E.1 XOR instead of threshold

As a warmup we give the more exotic of the two constructions, since its correctness is easier to
show. Instead of simple sum of the variables, we use XOR or sum modulo 2. This is one of the
famous functions used in computer science that resists local manipulations and is used in hashing,
pseudorandomness, etc.

Theorem 6. Suppose in our illustrative example we use XOR instead of simple sum, so that the
product produces a payoff iff the XOR of the underlying variables is 1. When D � logM + log 1/ε,
a dense subgraph that can change the expectation of even a single particular output (derivative) by
ε can be detected Ex-Post.

19

Proof. According to the construction, all assets outside the dense subgraph are independent and
have probability ρ of being 1. (In our illustrative example, ρ = 1/2 but any other constant will
work below as well.) If the degree of the dense subgraph d = D − t, then by property of XOR
function, the expectation of the XOR function lies in 1/2 ± ct where c is a constant smaller than
1 that only depends on ρ. When t = c′ log 1/ε, ct is smaller than ε. Therefore d > D −O(log 1/ε).
The probability that d of the inputs are all 0 is exponentially small in D, and thus is smaller than
1/M . That is, the expected number of derivative with at least d inputs are 0 is less than 1. But
all derivatives in the dense subgraph satisfy this property. These derivatives are easily detected in
the Ex-Post setting.

The XOR function is even effective in preventing dense subgraphs against a more powerful
adversary and Ex-Ante setting, where the adversary does not only know that there are n junk
assets, he can actually control the value of these n assets.

Theorem 7. When D � log 1/ε, dense subgraphs are Ex-Ante detectable if the ratio of manipulated
output (m/M) is larger than the ratio of manipulated input n/N .

Proof. Similarly, we have d > D −O(log 1/ε) = D − o(D). If m/M > n/N , and MD ≥ N , then

m4d8

n4
≥ M4d8

N4
= Θ(

M4D8

N4
)� M3D7

N4

so whether there is a dense subgraph can be detected by cycle counting algorithm (see Section F.2)

E.2 Tree of Majorities

The XOR function is not too natural in real life. One particular disadvantage is that XOR function
is not monotone. Buyers would probably insist upon the property that the derivative should be
rise and fall with the number of assets that default, which is not true of XOR. Now we give a
different function that is monotone but which still deters manipulation.

Let us think through the criteria that such a function must satisfy. Of course we would want
the function to be more resistant to fixing a small portion of its inputs. And, the function needs
to have symmetry, so that each input is treated the same as all other inputs. (We suspect that
if the function is not symmetric then it makes manipulation easier.) A standard function that is
monotone, symmetric and not sensitive to fixing a small portion of input is the tree of majorities:

Definition 1 (Tree of Majority). The function TMk on 3k inputs is defined recursively:

TM0(x) = x

TMk(x1, x2, ..., x3k) =MAJ(TMk−1(x1, x2, ..., x3k−1), TMk−1(x3k−1+1, x3k−1+2, ..., x2·3k−1),

TMk−1(x2·3k−1+1, x2·3k−1+2, ..., x3k))

In this section we assume all “normal” assets are independent and will default with probability
1/2. It’s clear that TMk is 1 with probability 1/2, is monotone and has some symmetry properties.
This function is also resistant to fixing o(2k) inputs, as is shown in the following theorem:

Theorem 8. Fixing any t inputs to 0, while other inputs are independent 0/1 variable with prob-
ability 1/2 of being 1, the probability that TMk is 0 is at most (1 + t/2k)/2.

20

Proof. By induction.
When k = 0 the theorem is trivial.
Assume the theorem is true for k = n, when k = n+ 1, since t inputs are fixed, let the number

of fixed inputs in the 3 instances of TMn be t1, t2, t3 respectively. Then t1 + t2 + t3 = t. When
t ≥ 2n+1 the theorem is trivially true. When any of t1, t2, t3 is more than 2n, then it’s possible to
reduce it to 2n while still make sure that instance of TMn is always 1. Now, the i-th instances of
TMn have at most (1 + ti/2n)/2 probability of being 0, so the probability that TMn+1 is 0 is at
most

1 + t1
2n

2
1 + t2

2n

2
1 + t3

2n

2
+

1− t1
2n

2
1 + t2

2n

2
1 + t3

2n

2
+

1 + t1
2n

2
1− t2

2n

2
1 + t3

2n

2
+

1 + t1
2n

2
1 + t2

2n

2
1− t3

2n

2

=
1
2

+
1
4

(
t1
2n

+
t2
2n

+
t3
2n

)
− 1

4
t1
2n

t2
2n

t3
2n

≤
1 + t

2n+1

2

Theorem 9. Suppose in the illustrative example the financial products pay 1 iff the tree function
TMk (where D = 3k) of the D underlying mini-assets evaluates to 1. If D � log3M then any
manipulation that significantly changes the expectation of even a single financial product is ex-post
detectable.

Proof. By the above analysis, to control the output value of TM function, the dense subgraph
parameter needs to satisfy d = O(D2/3). Thus when D � log3M this is Ex-Post detectable
because any of the financial products in which d of the inputs are 0 in the dense subgraph.

F Detecting Dense Subgraphs

Since designers of financial derivatives can use booby traps in their products to benefit from hidden
information, it would be useful for buyers and rating agencies to actually search for such anomalies
in financial products. Currently rating agencies seem to use simple agorithms based upon monte
carlo simulation [WA05]. There is some literature on how to design derivatives, specifically, using
ideas such as combinatorial designs [FPRS07]. However, these design criteria seem too weak.

Now we survey some other algorithms for detecting dense subgraphs, which are more or less
straightforward using known algorithm design techniques. The goal is to quantify the range of dense
subgraph parameters that will make the dense subgraph are detectable using efficient algorithms.
The dense subgraph parameters used in our constructions fall outside this range.

Note that the efficient algorithms given in this section require full access to the entire set of
financial products sold by the seller, and thus assumes a level of transparency that currently does
not exist (or would be exist only in a law enforcement setting). Absent such transparency the
detection of dense subgraphs is much harder and the seller’s profit from planting dense subgraphs
would increase.

In this section we’ll first describe several algorithms that can be used to detect dense subgraphs;
then we introduce the notion of Ex-Post detection; finally we discuss the constraints the booby trap
needs to satisfy.

21

F.1 Co-Degree Distribution

We can expect that some statistical features may have a large difference that allow us to detect this
dense subgraph. The simplest statistical features are degree and co-degree of vertices. The degree
of a vertex d(v) is the number of edges that are adjacent to that vertex. However, in our example,
we make sure that each asset is related to the same number of derivatives and each derivative is
related to the same number of assets. Therefore in both the random graph and random graph with
planted dense subgraph, the degrees of vertices appear the same. The co-degree of two vertices u
and v, cod(u, v) is the number of common neighbors of u and v. When D2

N � 1, by the law of large
numbers, the co-degree of any two derivatives is approximately a Gaussian distribution with mean
D2/N and standard deviation

√
D2/N . In the dense subgraph, two derivatives are expected to

have d2/n more common neighbors than a pair of vertices outside the dense subgraph. When

d2

n
>

√
D2 logN

N
,

by property of Gaussian distribution we know that with high probability, the pairs with highest
co-degree will all be the pairs of vertices from the dense subgraph. Therefore by computing the
co-degree of every pair of derivatives and take the largest ones we can find the dense subgraph.

F.2 Cycle Counting

Besides degree and co-degree, one of the features we can use is the number of appearance of certain
“structure” in the graph. For example, the number of length 2k cycles, where k is a constant,
can be used in distinguishing graph with dense subgraph. In particular, counting the number of
length 4 cycles can distinguish between graphs with dense subgraph or truly random graphs in
some parameters.

For simplicity we assume the following distributions for random graphs. The distribution R̂
is a random bipartite graph with M top vertices and N bottom vertices and each edge is chosen
independently with probability D/N . The distribution D̂ is a random bipartite graph with M
top vertices and N bottom vertices, there is a random subset S of bottom vertices and a random
subset T of top vertices, |S| = n and |T | = m. Edges incident with vertices outside T are chosen
independently with probability D/N . Edges between S and T are chosen with probability d/n.
Edges incident to T but not S are chosen with probability D − d/(N − n).

Let α be a length 4 cycle, then Xα is the indicator variable for this cycle (that is, Xα = 1
if the cycle exists and 0 otherwise). Throughout the computation we will use the approximation
M − c ∼ M where c is a small constant. Let R be the number of length 4 cycles in R̂, then
R =

∑
αXα.

E[R] =
∑
α

E[Xα] =
M2

2
N2

2

(
D

N

)4

=
M2D4

4N2

The variance of R is

Var[R] = E[R2]− E[R]2 =
∑
α,β

(E[XαXβ]− (D/N)8)

Since each E[XαXβ] is at least (D/N)8, this is lower bounded by
∑

(α,β)∈H(E[XαXβ]−(D/N)8)
for any set H. It’s easy to check that the dominating term comes from the set H where α and β
shares a single edge. |H| = M3N3/4, and for each (α, β) ∈ H, E[XαXβ] = (D/N)7. Therefore

22

Var[R] = Ω(M3D7/N4). By considering cycles that share more edges we can see that the terms
they introduce to Var[R] are all smaller, so Var[R] = Θ(M3D7/N4).

For D̂, when the two top vertices of α are all outside T E[Xα] = (D/N)4; when one of the
vertices is inside T the average value for E[Xα] is still (D/N)4 (this can be checked by enumerating
the two bottom vertices); when two top vertices are all in T the average value for E[Xα] is roughly
d4/n2N2. Let Y be the number of 4-cycles in D̂, then

E[Y]− E[R] ≈ m2

2
N2

2
d4

n2N2
=
m2d4

4n2

That is, when m4d8/n4 � Var[R] = Θ(M3D7/N4), by counting length 4 cycles the two distri-
butions R̂ and D̂ can be distinguished.

F.3 Semi-definite Programming

Semi-definite programming (SDP) is a powerful tool to approximate quantities we do not know
how to compute. Consider the densest bipartite subgraph problem: given a bipartite graph with N
vertices on the left side and M vertices on the right side, find a set of n vertices from left side and
m vertices on the right side, such that the number of edges between them is maximized. Clearly if
we can solve this problem we would be able to see whether there’s a dense subgraph in the graph.
Because the dense subgraph is much denser than average, we can distinguish a random graph with
one with dense subgraph even if we can approximate the densest subgraph problem to some ratio.

Using SDP, we can compute a value vSDP that is no smaller than the number of edges in the
densest subgraph. Using a simple extension of the SDP from [BCC+09], for random graph, vSDP is
of order Θ(

√
Dmn). If the number of edges in the dense subgraph (md) is larger than this (which

means m � n), then since the SDP value of the graph with dense subgraph is at least md, the
SDP algorithm can be used to distinguish the two situations.

F.4 Ex-Ante and Ex-Post Detection

So far in this paper we were concerned with detecting the presence of dense subgraphs (i.e., booby
traps) at the time of sale of the derivative, before it is known which assets pay off and which
ones default. But one could try to enforce honest construction of the derivative by including a
clause in the contract that says for example that that the derivative designer pays a huge fine if
a dense subgraph (denser than should exist in a random construction) is found in the derivatives
vs. assets bipartite graphs, and this can happen after all assets results are known— we call this ex
post detection of dense subgraphs, contrasted with the normal, sell-time ex ante detection that is
our focus in most of this paper.9

Ex-Post detection is easier than Ex-Ante detection, because we have more information after
the result has been revealed: the junk assets must be assets in the set of the defaulted assets, and
most of the manipulated derivatives are in the set of derivatives with no return. One simple use of
this observation is: when the expected number of derivatives with no return in random graphs is

9We remark that this is not the only, nor necessarily the best, way to mitigate these problems. Another could
be for the designer to use random coins that were generated by some public trusted authority. The problem in both
these approaches is that sometimes the graph is constructed by the seller subject to a variety of constraints, and
hence the seller himself may not know for sure if a dense subgraph exist. Now if a dense subgraph exists without
the sellers knowledge, this opens the possibility that the buyer will find it, either by luck or by investing significant
computational effort, and hence use a clause such as above to extract the fine from the seller. Note that making the
fine equal to the derivative’s value is not a solution as well, since that allows the party that knows the existence of
the dense subgraph to decide based on its knowledge of the past to decide if it wants to “roll back the deal”.

23

extremely small (e.g. o(m)), then almost all derivatives with no return are in the dense subgraph,
and hence one can find it easily. But the number of derivatives with no return is large (e.g. Ω(M))
then it still seems hard to find the dense subgraph even ex-post. We do not have a proof that this is
the case, but can show a relation between finding the planted subgraph in the ex-post and ex-ante
setting in a slightly differe nt model of random graphs.

Fixing parameters N,M,D, n,m, d as usual we define the added dense subgraph search problem
to be the following problem: one is given a bipartite graph G on M+N vertices that is constructed
by (a) having each vertex vi of the M top vertices of G choose a number Di using a geometric
random variable with expectation D, and then choose Di random neighbors, and (b) adding to G
the edges of a random bipartite graph H on m+ n vertices and degree d, where we place H on m
random top vertices and n random bottom vertices. The goal is to recover the vertices of H or any
other induced subgraph of G on m+ n vertices that has ω(n) edges.

Since we’ll be interested in d = Ω(
√
D) and m = Ω(

√
M), it will be in fact easy to use the

degree distribution of such a graph G to distinguish it from a random graph in which step (b) is
not applied. But the point is that it might still be hard to actually find the dense subgraph. If this
is hard, then we show it’s still hard even in the ex-post setting.

Theorem 10. Suppose that the added dense subgraph search problem is hard for parameters
N,M,D, n,m, d then the search problem is still hard for parameters 2N,M, 2D,n,m, d given a
random assignment x ∈ {0, 1}N conditioned on xi = 0 for all i in the planted graph.

Proof sketch. Given an instance G of the dense subgraph we’ll convert it into an instance (G′, x) of
the ex-pose problem, where G′ is a graph on M + 2N vertices and degree parameter roughly 2D,
and x is an assignment to the 2N bottom vertices of G′ on which all vertices in the planted graph
are zero.

The graph G will contain the M+N vertices of G but we add to it N/2 new bottom nodes, and
let x be an assignment that gives 0 to all old nodes and 1 to all new ones. (We’ll later permute the
nodes randomly; also in this proof sketch we assume that the assignment is balanced, but in fact
we’ll need to choose the number of nodes to add in a way that the number of 0’s of the resulting
assignment is distributed according to the binomial distribution.)

Given such a balanced assignment x to the bottom vertices, adding edges to a top vertex v in
this model to a graph can be thought of as the following process: one tosses a 3-way coin that
with probability 1/D outputs “halt”, with probability (1− 1/D)/2 outputs 0 and with probability
(1 − 1/D)/2 outputs 1. If the coin outputs 0 we add to v a random neighbor with 0 assignment,
if it outputs 1 we add a random neighbor with a 1 assignment, and continue until the coin says
“halt”.

We now imitate this process but starting with the edges already in G: for each top vertex v in
G′, we conceptually toss such a three way coin, but add an edge only if it outputs 1: for the 0 or
“halt” possibilities we defer to the coin tosses made in the generation of G. More concretely, we
set ε ∼ 1/(2D) to satisfy the equation 1/2− ε = (1/2 + ε)(1− 1/D). We now toss a 1/2− ε biased
coin and if it comes out “heads” we add to v a random 1 neighbor (e.g. one of the new N vertices
we added), if it comes out “tails” we do nothing. We continue to do so until the coin comes out
“tails” Di + 1 times, where Di is the degree of v in G.

Because this model does not fit with our standard model of planted graphs (and indeed cannot,
since we need a model where not only the search but also the detection problem can be hard),
we do not have any formal results for this model. However, many of our results hold even when
the threshold is set to a constant number of standard deviations. In this case it seems plausible

24

Model Lemon cost for b = 3
√
D Lemon cost for b = O(

√
D logD)

Derivative-free n n
binary CDO, exp time εn

√
D + n(N/M

√
D) ∼ n(N/M

√
D)� n

binary CDO, poly time εn
√
D + n

√
N/M ∼ n

√
N/M � n

tranched CDO, exp time εn+ n(N/MD) n(N/MD)
tranched CDO, poly time εn+ n(

√
N/MD) n(

√
N/MD)

binary CDO2, exp time 0 0
binary CDO2, poly time N/4 N/4
tranched CDO2, exp time 0 0
tranched CDO2, poly time n(

√
N/MD) n(

√
N/MD)

Table 2: Lemon cost results based on value of threshold b. While in our parameters derivatives
with b ∼

√
D logD are easily ex-post detectable, it is not clear whether this holds for b = O(

√
D).

to conjecture that the ex-post search problem still remains hard as well. Table 2 contains our
result when the threshold b is constrained to be O(

√
D), in which case it’s plausible that ex-

post undetectability holds, as well (for comparison’s sake) the corresponding results for our usual
setting of b =

√
D logD, which is generally ex-post detectable by the algorithm of just looking at

the derivatives of 0 value.

F.4.1 Ex post undetectability in a DeMarzo-type model

One can also modify our DeMarzo-type model so that seller’s tampering is undetectable ex post.
Assume for each asset class we have a probability pclass, which is the probability of default in

this class. At first this pclass is drawn according to some distribution, then conditioned on this
probability, all assets in this class will default with probability pclass. The distribution of pclass in
good asset classes and junk asset classes are different.

In asset class model, we need to be careful when picking the distribution of pclass. The easiest
choice pclass = 1/2 for good classes and pclass = 1 for junk classes leads to ex post detection, because
the assets in junk classes all defaulted, but for a good class, only with exponentially low probability
all assets will default. Therefore, to rule out trivial methods for ex-post detection, the distributions
of pclass in good and junk classes should not differ by too much. For example, pclass is uniformly
chosen from [0.2, 0.8] for good classes, while for junk classes pclass is uniformly chosen from [0.5, 0.8].
On average, an asset from junk classes still have significantly higher probability of default than an
asset from good classes (0.65 vs. 0.5), which enables dense subgraph to manipulate the result. At
the same time, half of the good classes will have pclass from [0.5, 0.8] and look indistinguishable
with junk classes, so junk classes still hide among the good classes even after results are revealed.

F.5 Constraints for Parameters

In order to avoid detection and satisfy the requirement of making profit, the parameters for dense
subgraph need to be carefully chosen. Here we give a list of constraints that need to be satisfied
by the parameters

1. MD ≥ N .

This is a trivial constraint saying that each asset should be related to at least one derivative.

25

2. d− b > 3
√
D.

This constraint makes sure that the derivatives in the dense subgraph behaves differently
from the derivatives outside. When d− b >

√
D, by Gaussian approximation, the probability

that the number of defaulted assets is more than D+b
2 is at least Φ(3) = 99.8%. When d− b is

smaller, say d− b =
√
D, the probability of the same event will be much smaller. Especially

when d− b = o(
√
D) such event will have a subconstant probability.

3. d/D � n/N .

This constraint says that the dense subgraph is much denser than average. If it is not satisfied,
then any derivative is expected to contain D ·n/N > d assets in the junk asset set, even simple
monte-carlo simulation will be able to see that the expected payoff value of the derivatives
has changed because of the junk assets.

4. n� md.

This constraint is essential in the proof that a random graph will not have dense subgraphs.
See Theorem 1. If it is not satisfied then a random graph is expected to have a graph as
dense as the dense subgraph.

5. MD2

N � (md
2

n)2.

When this condition is satisfied, the dense subgraph is hard to detect for both cycle counting
(Section F.2) and SDP (Section F.3).

6. d < 2
√
D logM

This is only needed for Ex-Post detection. If this is not satisfied, d ≥ 2
√
D logM , then for

each derivative, the number of defaulted assets exceeds D+d
2 with probability at most 1/M ,

while the derivatives in the dense subgraph has probability 1/2 of exceeding the threshold.
In an ex post setting, the buyer will see almost all derivatives that exceeds the limit will
be derivatives in the dense subgraph, and half of the derivatives in the dense subgraph will
exceed the limit. This makes the dense subgraph ex post detectable.

7. M
√
D � N

When this constraint is satisfied, and b ≥ 2δ
√

log MD
N , the lemon cost for exponential time

buyers of binary derivatives will be smaller than n, while the lemon cost for polynomial time
buyers is always larger than n. See Section 2

8. m2 �M2D2/N or m2d2 �M2D2/N

When the former is satisfied, then binary CDO2s can have exponential difference between
the lemon cost for exponential time buyer and polynomial time buyer. When the latter is
satisfied, then CDO2s with tranching can have exponential difference between the lemon cost
for exponential time buyer and polynomial time buyer. See Theorem 4 and Theorem 5

26

	Introduction
	An illustrative example
	The cost of complexity: definitions and results
	Comparison with DeMarzo(2005)

	Lemon Cost Bounds for Binary Derivatives
	Non-Binary Derivatives and Tranching
	Lemon Cost for CDO2
	Design of Derivatives Resistant to Dense Subgraphs
	Conclusions
	Real world financial derivatives
	Our construction versus real-life derivatives

	Omitted proofs from Section 2
	Maximizing Profit in Binary Derivative Setting

	Omitted proofs from Section 3
	Omitted proofs from Section 4
	Derivatives resistant to Dense Subgraphs
	XOR instead of threshold
	Tree of Majorities

	Detecting Dense Subgraphs
	Co-Degree Distribution
	Cycle Counting
	Semi-definite Programming
	Ex-Ante and Ex-Post Detection
	Ex post undetectability in a DeMarzo-type model

	Constraints for Parameters

