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Abstract

We provide the first construction of a concurrent and non-malleable zero knowledge argument for every language
in NP. We stress that our construction is in the plain model without allowing a common random string, trusted
parties, or super-polynomial simulation. That is, we construct a zero knowledge protocolΠ such that for every
polynomial-time adversary that can adaptively and concurrently schedule polynomially many executions ofΠ, and
corrupt some of the verifiers and some of the provers in these sessions, there is a polynomial-time simulator that can
simulate a transcript of the entire execution, along with the witnesses for all statements proven by a corrupt prover
to an honest verifier.

Our security model is the traditional model for concurrent zero knowledge, where the statements to be proven
by the honest provers are fixed in advance and do not depend on the previous history (but can be correlated with
each other); corrupted provers, of course, can chose the statements adaptively. We also prove that there exists
some functionalityF (a combination of zero knowledge and oblivious transfer) such that it is impossible to obtain
a concurrent non-malleable protocol forF in this model. Previous impossibility results for composable protocols
ruled out existence of protocols for a wider class of functionalities (including zero knowledge!) but only if these
protocols were required to remain secure when executed concurrently with arbitrarily chosen different protocols
(Lindell, FOCS 2003) or if these protocols were required to remain secure when the honest parties’ inputs in each
execution are chosen adaptively based on the results of previous executions (Lindell, TCC 2004).

We obtain anÕ(n)-round protocol under the assumption that one-to-one one-way functions exist. This can
be improved toÕ(k log n) rounds under the assumption that there existk-round statistically hiding commitment
schemes. Our protocol is a black-box zero knowledge protocol.

Keywords: Non-malleable protocols, concurrent composition, concurrent zero knowledge, non-malleable zero knowl-
edge
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1 Introduction

In the two decades since their introduction [GMR85], zero-knowledge proofs have played a central role in the study of
cryptographic protocols. Intuitively speaking, a zero-knowledge proof is an interactive protocol that allows one party
(a “prover”) to convince another party (a “verifier”) that some statement is true, without revealing anything else to the
verifier. The zero knowledge property was formalized in [GMR85] by requiring that the verifier can efficientlysimulate
its view of an interaction with the prover, when given only the statement as input – i.e., without any knowledge of why
the statement is true.

In many settings, however, the above security guarantee is not sufficient. Consider a situation in which Alice is
giving a zero-knowledge proof of the statement X to Bob, and at the same time Bob is trying to give a zero-knowledge
proof of some other statement X’ to Charlie. Our intuitive definition of zero-knowledge tells us that Bob should not
get any “help” in proving X’ to Charlie by means of the zero-knowledge proof that Bob is getting from Alice – i.e.
Bob should only be able to prove X’ to Charlie if he could have done it on its own, without any help from Alice.
This property is callednon-malleability[DDN91] for zero-knowledge proofs. It turns out that the standard simulation
definition of zero knowledge does not imply non-malleability, and in fact, many known zero-knowledge proofs are
susceptible to this kind of attack. We note that we can describe non-malleability as security in the following scenario:
there are two executions of zero-knowledge proofs, with the adversary corrupting the verifier in one execution and the
prover in the other.

Another setting considered in the literature is the following: Suppose there are many verifiers, all of which are
receiving zero-knowledge proofs from various provers at the same time. We would like to guarantee that even if many
of these verifiers collude, they still can’t learn anything nontrivial from the provers – i.e., that it is possible to efficiently
simulate the view of all the colluding verifiers interacting with the provers, given only the statements being proven by
the provers. This property is calledconcurrent zero knowledge[DNS98, RK99], and here too, the standard definition of
zero knowledge does not imply concurrent zero knowledge.

1.1 Our Results

In this work, we present the first protocol that is provablysimultaneouslynon-malleable and concurrent zero knowl-
edge in the “plain” cryptographic model without any setup assumptions. Our protocol allows provers to prove any
NP statement and is based on standard cryptographic assumptions – namely, the existence of collision-resistant hash
functions. The assumptions that we use is the existence of statistically hiding commitment schemes. Such schemes can
be constructed withO(n) rounds under one-way permutations [NOVY92] and and even regular (and in particular one-to-
one) one-way functions [HHK+05] and in constant rounds under claw-free permutations [GMR84] or collision-resistent
hash functions [DPP93, HM96]. Simultaneous non-malleability and concurrency means that in the setting where there
are many verifiers and provers all interacting concurrently, with scheduling decided by the adversary as well, security
is preserved even if the adversary corrupts an arbitrary subset ofboth the provers and the verifiers. The definition of
security is that for any such adversary there exists a polynomial-time simulator that, given only the statements proven
by the honest parties (and not the witnesses), simulates the entire execution, and outputs along with the simulated
transcript a list of witnesses corresponding to all statements successfully proven in this transcript by corrupted provers
to honest verifiers. This definition is the natural combination of non-malleable zero knowledge [DDN91] and concurrent
zero knowledge [DNS98, RK99], and is also similar to the analogous definitions for non-malleable and concurrent com-
mitments [DDN91, PR05A]. We note that the best previous results on zero knowledge either (1) achieved only concurrent
zero knowledge without non-malleability [RK99, KP01, PRS02], (2) achieved non-malleability but only with a bounded
number of parties present [DDN91, BAR02, PR05B], (3) made use of global setup assumptions like a common reference
strings [CLOS02] or time-delayed messages [KLP05], or (4) used different security frameworks like super-polynomial
simulation [PS04, BS05, MMY06].

As in previous works on concurrent zero knowledge and non-malleable zero knowledge, our model assumes that
the vector of inputs (statements and witnesses) to all parties is fixed according to some pre-determined distribution
(although corrupted parties of course do not have to use their given inputs and can choose their inputs and messages
adaptively). However, our security proof doesnot extend to the case of adaptively chosen honest inputs; this is with
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good reason, as it was shown by Lindell that there isno concurrent non-malleable zero knowledge protocol for honest
adaptive inputs [L IN04]. Indeed, Lindell’s argument also ruled out many other functionalities, including oblivious
transfer (OT), in the setting where the inputs for honest parties can be chosen adaptively based on outputs of previous
protocols.

This leads to a natural question: Can we generalize our positive result on concurrent non-malleable zero knowledge
to obtain a result foranypolynomial-time functionality – as long as the inputs to honest parties are fixed in advance?
We answer this questionnegativelyby exhibiting a simple and natural functionality that is impossible to realize, even
in the setting where all honest inputs are fixed in advance. Our negative result is also somewhat surprising since in
many other settings (i.e., UC security in the common reference string model [CLOS02], bounded-concurrent security
[L IN03A, PR03, PAS04], super-polynomial simulation [PS04, BS05, MMY06], and composition in timing model [KLP05])
obtaining composable zero-knowledge protocols was the key step to obtaining protocols for all functionalities1.

Our techniques. Perhaps surprisingly, our protocol does not use non-black-box techniques, but rather only uses
black-box concurrent zero knowledge and non-malleable commitments; both tools that have been around for several
years by now [RK99, DDN91] (although we do require some tweaking of these protocols, see below and Section 2). We
see our main novelty in our proof of security.

Essentially all known techniques for achieving concurrent zero knowledge simulation and non-malleability in the
plain model have relied crucially on proof techniques based on complex “rewinding” arguments2. A critical component
to many results (e.g. [DDN91, PRS02, PR05A, BS05]) has been the development of new proof techniques to tame the
complexity introduced by rewinding, often through new kinds of hybrid arguments. At a technical level, we continue
in this line and develop new techniques for dealing with complex rewinding in security proofs.

Our protocol uses the Prabhakaran-Rosen-Sahai (PRS) [PRS02] concurrent zero knowledge protocol and simulation
strategy. We also want to make use of non-malleable commitment constructions (e.g. [DDN91, PR05A]) to obtain non-
malleability. This gives rise to two main obstacles: (1) We need to guarantee that the non-malleability properties of
these commitment schemes remain even in the presence of our rewinding. Note that in general, this should not be true
– an adversary for a plain-model non-malleable commitment scheme such as [DDN91, PR05A] that can rewind honest
parties would always be able to cheat. We develop a new hybrid argument that shows that we can guarantee non-
malleability by making specific use of the properties of the PRS rewinding strategy and a statistical zero knowledge
variant of the PRS protocol. (2) The other major obstacle is that the techniques for non-malleability necessarily involve
rewinding of their own (for extraction). We develop a new proof technique to show that the extraction methods we
need can work “on top of” the PRS rewinding strategy.

For our impossibility result ruling out concurrent non-malleable realizations of more general functions, even when
honest party input distributions are fixed, we work as follows: we start by taking one of the counterexamples showing
that very strongly composable protocols (e.g., UC security [CAN01] or security against “chosen-protocol attack” [KSW97,
L IN03B]) for, say, zero knowledge, do not exist in the plain model (where there are no trusted parties or common
reference strings). This basically implies that for every supposedly composable zero-knowledge argumentΠ, there
exists a protocolΠ′, depending onΠ, such that their concurrent execution is not secure. The main novelty in our
work is that in order to get the kind of result we want, we use a variant of Yao’s garbled circuit technique [YAO86] to
“compile” the protocolΠ′ into a protocol using the oblivious transfer functionality. Thus, we create a scenario where
for every protocolΠ implementing the combined zero knowledge and oblivious transfer functionality (or equivalently,
for every pair of protocolsΠZK andΠOT each implementing these two functionalities), there’s an adversary launching
a concurrent attack that manages to learn a secret with probability close to1 in the real world, but no adversary would
only be able to learn the secret with non-negligible probability in the ideal model. Note that, unlike its typical use,
we’re using Yao’s technique here to get anegativeresult. (This is somewhat similar in spirit to [BGI+01].)

1We do believe that the pattern will still hold true here – that our concurrent non-malleable zero-knowledge protocol will lead to protocols
for all or large classes of functionalities, but just not according to the same definition of security. In the conclusions section, we mention some
possible directions.

2We note that all known non-black-box techniques [BAR01, BAR02, PAS03, PR03, PR05B, PR05A, BS05] for achieving concurrent simulation
or non-malleability can also be seen as introducing complexities similar to those that arise with rewinding. This is one of the reasons that natural
generalizations of [BAR01] has not led to a constant-round concurrent zero-knowledge protocol.
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1.2 Previous works.
Concurrent zero knowledge. Concurrent zero knowledge (where the adversary corrupts either only provers or only
verifiers) was defined by Dwork, Naor and Sahai [DNS98] and the first construction was given by Richardson and
Kilian [ RK99]. The number of rounds was improved tõO(log n) by [KP01, PRS02] which is optimal forblack-box
simulation[CKPR01]. (A constant round protocol satisfying a weaker form of concurrent zero knowledge was given in
[BAR01] using non-black-box simulation.)Non-malleable zero knowledge.Non-malleable zero knowledge was first
defined and constructed by Dolev, Dwork and Naor [DDN91]. Constant round protocols were given in [BAR02, PR05B].
These latter works also introduced some more convenient definitions (which we follow) than the [DDN91] definition
(inspired by definitions of non-malleablenon-interactivezero knowledge [SAH99]). Non-malleable and concurrent
commitments.By a simple hybrid argument, every commitment scheme remains secure under concurrent composition
if the adversary can corrupt either only senders or only receivers. As in the case of zero knowledge, stand-alone
non-malleable commitments were defined by [DDN91] and constant-round protocols were given in [BAR02, PR05B]. In
a recent and exciting work, Pass and Rosen [PR05A] showed that the commitment scheme from [PR05B] is actually
concurrently non-malleablethus giving anO(1) round concurrent non-malleable commitment scheme.Note: In many
previous works, progress in commitment schemes and zero-knowledge went hand in hand, where one could obtain a ZK
protocol satisfying security notionX by plugging a commitment scheme satisfyingX to a standard standalone protocol
[DDN91, CF01, CLOS02, L IN03A]. Thus, one might hope that one could obtain in this way a concurrent non-malleable ZK
protocol from the [PR05A] scheme. However, an important limitation of [PR05A] is that security is guaranteed only under
the condition that only thecommitprotocol and not therevealprotocol is executed concurrently. For this reason, such
commitment schemes do not automatically imply concurrent non-malleable zero knowledge proofs. In particular, we
do not know that if we plug in [PR05A]’s commitments in one of the well known constant-round ZK or honest-verifier
ZK protocols we will get a concurrent non-malleable ZK protocol. In fact, that would be quite surprising since in
particular it will yield the first constant roundconcurrent zero knowledgeprotocol. We note that our work here does
not work in this way, and indeed, we can make use of “non-concurrent” non-malleable commitment protocols like the
original protocol of [DDN91], thus avoiding non-black-box techniques altogether, and reducing our assumptions to just
regular one-way functions. We also don’t know whether it’s possible make the proof simpler by using concurrently
non-malleable commitments.

Universally composable (UC) security, general and self composition.In [CAN01], Canetti introduced the notion
of universally composableor UC security for cryptographic protocols. This is a very strong notion of security and in
particular a UC secure zero-knowledge protocol will be concurrently non-malleable and in fact will compose with an
environment that contains executions of arbitrary other protocols as well (see also [L IN03B]). However, this notion, that
essentially implies black-box straightline simulation, is in some sense “too strong”, and it was shown that in the “plain”
model, without trusted parties, honest majority or setup, it isimpossibleto achieve UC-secure zero knowledge and in
fact a very wide range of functionalities including commitment schemes [CAN01, CF01, CKL03]. (See [BOGW88, CAN01,
CLOS02, BCNP04] for constructions in other models.)Self-composition. As mentioned above, Lindell [L IN04] showed
that for the case ofmessage passing functionalities(functionalities allowing to transmit a bit, in particular including
zero knowledge), security for concurrent composition of thesameprotocolunder adaptive input selectionessentially
implies UC security and hence it is impossible to obtain a zero knowledge protocol satisfying this notion of self-
composition in the plain model. Adaptive input selection is defined by having the inputs supplied by an environment as
in the UC model, but unlike the UC definition, this environment is not allowed to look at the actualcommunicationof
the executions but only at theoutputsof these executions. In contrast, in our security model the inputs may be chosen
from some distribution but are supplied in advance to all parties, and so, while we can’t control the corrupted parties’
behavior, the honest parties do not choose their inputs adaptively based on previous executions.

Super-polynomial-time simulation. Another sequence of works considered a setting where the ideal model simula-
tor is allowed to run insuper-polynomialtime [PS04, BS05, MMY06]. This allows to bypass the UC impossibility results
and yield protocols for any functionality that seem to supply adequate security for many applications. However, the
definition is not as intuitive and mathematically clean as polynomial-time simulation, and the current constructions do
suffer from drawbacks such as requiring stronger complexity assumptions, and a tradeoff between the time of simula-
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tion and the standalone soundness of the protocol.Security for independent inputs. Garay and MacKenzie [GM00]
show a protocol for oblivious transfer that is concurrently secure if the inputs to the parties in each execution is chosen
independently and at random from a known distribution such as the uniform distribution. We note that in this paper we
consider the more standard setting where the inputs are arbitrarily chosen and in particular may be correlated.

1.3 Preliminaries.

We consider only two party protocols in this paper. Our model is ofm partiesP1, . . . , Pm (not necessarily aware of
one another) that interact in pairs via some two party protocolΠ. There’s some distributionD on inputsx1, . . . , xm

and each partyPi uses inputxi in its interaction (by adding more parties if necessary, we can assume that each party
participates in at most one interaction ofΠ). We assume an adversaryAdv that chooses initially to corrupt a set of
parties{Pi : i ∈ C}, and receives the inputs for that set, and completely controls these parties. The adversary can also
schedule concurrently and adaptively all the messages in the network. We assume that all parties in the network have
unique identities and authenticated communication (following [DDN91] this can be relaxed somewhat for the positive
result). We say thatΠ securely implementsan ideal functionalityF with two inputs and two outputs if for any such
Adv corrupting a setC there’s a simulatorSim that receives the inputsxi for i ∈ C, and for every pair(i, j) that
interacts viaΠ with i ∈ C andj 6∈ C, Sim gets one access to the first output of the functionx 7→ F(x, xj) (we have
an analogous definition if the corrupted party is the second in the pair). The outputs ofSim and the second output
should be computationally indistinguishable from the outputs ofAdv and the outputs of the honest parties in the real
execution. It can be shown thatΠ is concurrent non-malleable zero knowledge for anNP-relationR if and only if it
secure implements the ZKPOK functionalityF defined as follows:F(x ◦ w) = x iff (x,w) ∈ R andF(x ◦ w) = ⊥
otherwise (this functionality only uses one of its inputs).

2 A concurrent non-malleable zero knowledge protocol

We have included a self-contained Appendix A with details and full proofs for the material in this section.

Definition. The formal definition of a Concurrent Non-Malleable Zero Knowledge (CNMZK) argument of knowl-
edge for membership in anNP language appears in the appendix as Definition A.1. Informally, the concurrent non-
malleability property states that for every (non-uniform PPT) adversaryA interacting with honest proversP1, . . . , PmL

in mL “left sessions” and with honest verifiersV1, . . . , VmR in mR “right sessions” of the protocol (withA controlling
the scheduling of all the sessions), there exists a simulatorS such that for every set of “left inputs”y1, . . . , ymL , we
haveS(y1, . . . , ymL) = (ν, z1, . . . , zmR), whereν is a simulated view ofA, andz1, . . . , zmR are valid witnesses to the
statements proven byA to V1, . . . , VmR according to the viewν. (We letzi = ⊥ if Vi does not accept according toν).

Result from [PRS02]. We heavily rely on techniques from [PRS02]. First we sketch the “protocol preamble” used there.
1. PRS Commitment: The verifier picks a (sufficiently long) random stringσ, commits toσ and many secret

sharings ofσ, using a statistically binding commitment schemeComPRS.
2. PRS Challenge-Response:This is followed by (super-logarithmically) many rounds of random challenges by

the prover. In response, the verifier must open some of the PRS commitments (without revealingσ).
3. The prover considers the preamble to have “concluded.”
4. PRS Opening: The verifier opens all the commitments made in the PRS Commitment step, and the prover

verifies consistency.
5. The prover “accepts” the preamble.

There can be other messages in the protocol between the prover concluding the preamble and the verifier opening the
commitments.

ThePRS simulator(for our purposes) is the following program which “simulates” multiple (polynomially many in
the security parameter) concurrent sessions of the protocol between honest provers and a combined adversarial verifier,
APRS. The simulator gets inputs of all the parties in all the sessions, and it runs the honest provers and the adversarial
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verifier internally.3 In the end it produces an ordered list of “threads of execution.” A thread of execution consists of
views4 of all the parties, such that the following hold.

• Each thread of execution is a perfect simulation of a prefix of an actual execution.
• The last thread, called themain thread, is a perfect simulation of a complete execution (i.e., until all the parties

terminate); all other threads are calledlook-ahead threads.
• Each thread shares a (possibly empty) prefix with the previous thread, and is derived by running the honest

parties with fresh randomness after that point.

The aim of the PRS simulator is, for each PRS commitment that it comes across in any session in any thread, to
extract the committed valueσ (referred to as the “PRS secret”) before the preamble isconcludedin that thread. The
extraction is achieved by observing the adversary’s messages in multiple previous threads. If it fails to extract the PRS
secret in any session in a thread,and the execution goes on toacceptthe preamble of that session in that thread, then
the simulation is said to “get stuck.” [PRS02] guarantees that the probability of the PRS simulation getting stuck is
negligible.

Lemma 2.1. (Adapted from [PRS02]) Consider proversP1, . . . , Pm and an adversarial verifierAPRSrunningm ses-
sions of a protocol with the PRS preamble as described above, wherem is any polynomial in the security parameter
k. Then except with negligible probability, in every thread of execution output by the PRS simulator, if the simulation
reaches a point where the proverPi accepts the PRS preamble withσ as the secret in the preamble, then at the point
when the preamble was concluded, the simulator would have already recorded the valueσ.

In fact [PRS02] prove a refinement of this lemma (that we too will need): instead of the simulator running each
thread exactly as in the original execution, if each thread (individually) is executed in an indistinguishable way, the
lemma still holds. It is important that here we require the indistinguishability requirement only on aper threadbasis.
In particular the joint distribution of the threads in the latter simulation is allowed to be distinguishable from the joint
distribution of the threads in the original simulation.

We shall adapt the PRS simulator to our setting in which an adversaryA is engaged in concurrent left hand side
sessions as the verifier, while concurrently playing the prover in multiple right hand sessions. In (unshared parts of) the
different threads, the simulator uses fresh randomness for all the honest parties, but uses the same random tape forA
in all the threads. This is important for us because in our simulation we will need to use fresh randomness for the right
hand side verifiers in different threads (except during the shared prefixes).

Non-Malleable Commitment. Another ingredient we need is a perfect (or statistically) binding, non-malleable (not
necessarily concurrent non-malleable) commitment with a “stand-alone extractability” property. The non-malleability
property is similar to that defined in [PR05A], but needs to hold when there is one left and right executions each. The
construction in [DDN91] also satisfies this property. The “extractability” property is that there is an efficient extractor
which, given a randomly generated view of a stand-alone committer committing a value to an honest receiver, can
extract the committed value except with negligible probability. We also impose a technical condition that the receiver
should be public coin up to a “knowledge determining message” in the protocol. Protocols in [DDN91] and [PR05A] can
be easily modified to have these properties. See Appendix A.3 for details.

Other ingredients. The other ingredients we use are a statistically (or perfectly) hiding commitment schemeComSH

and a statistical (or perfect) ZK argument of knowledgesZKAOK, for proving knowledge of witness for membership
in anyNP language.

We note that all our ingredients are realizable under the assumption that regular one-way functions exist [NOVY92,
HHK+05].

3Note that the “simulator” as described here is given all the inputs to all the parties. Later, after introducing this simulator into the sequence
of hybrids in our proof, we shall show how to get rid of these inputs.

4Here, and elsewhere, by the view of a party we mean the sequence of its internal states during the execution, including the messages received
and sent by it.
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2.1 Our Protocol

Consider anNP-complete languageL with a witness relationshipR. The prover and verifier receive a common input
y and the prover receives a witnessw such thatR(y, w) = 1. The protocolCNMZK is described below.

Phase I: PRS preamble (see Section A.2) up to the point where the proverconcludesthe preamble.
Phase II: Prover commits to the all-zero string usingComSH. Then it usessZKAOK to prove the knowledge of the

randomness and inputs to this execution ofComSH.
Phase III: Continue the PRS preamble until the prover accepts the preamble. Let the secret in the preamble (as

revealed by the verifier) beσ.
Phase IV: Prover commits to the witnessw usingComNM.
Phase V: Prover proves the following statement usingsZKAOK: either the value committed to in Phase IV isw such

thatR(y, w) = 1, or the value committed to in Phase II isσ. It uses the witness corresponding to the first part of
the statement.

Theorem 2.2. ProtocolCNMZK is a black-box concurrent non-malleable zero knowledge argument for membership
in theNP languageL (Defintion A.1).

Proof Sketch:It is easy to see that the protocol satisifies the completeness condition. Below we sketch how to build a
simulator-extractor, as required by the definition (i.e., the second condition in Defintion A.1).

We build the simulatorS in stages, via intermediate simulatorsHi, for i = 1, . . . , 4. Hi outputs a simulated view
ν(i). (S will in addition output a list of witnesses.) We define2mR random variables{b(i)

` , α
(i)
` }mR

`=1, whereb
(i)
` is a

bit denoting whether according toν(i), V` accepted the proof from the adversary or not, andα
(i)
` is the value contained

in the Phase IV commitmentComNM received byV` (as determined by the determining message; if there is no unique
value, then it is defined to be⊥).
Stage 1:H1 gets all the inputs toP1, . . . , PmL as well as the inputs toA. It internally runs the (honest) programs of
P1, . . . , PmL , as well the honest program for the verifiersV1, . . . , VmR , to generateA’s view ν(1). The simulation is
perfect.

Also one can show that due to the knowledge soundness of thesZKAOK scheme used in Phase II and Phase V,
if V` accepts the proof in thè-th right hand session in the simulated viewν, then, except with negligible probability,
the Phase IV commitment in that session indeed contains a valid witnessz` to the statementx`. That is, except with
negligible probability,

∀`
(
b
(1)
` = 1

)
=⇒

(
R(x`, α

(1)
` ) = 1

)
. (1)

Stage 2: H2 works just likeH1, but it also does the PRS look-aheads and records the PRS secrets. It aborts is
the PRS simulation gets stuck. Otherwise it outputs the view of the adversary in the main thread of this simulation
asν(2). By Lemma 2.1 we know that the probability of aborting is negligible. Hence, we haveν(1) ≡S ν(2) and
∀` (b(1)

` , α
(1)
` , y`) ≡S (b(2)

` , α
(2)
` , y`).

Stage 3:H3 works likeH2, except that in all the simulated left hand side sessions, the prover commits to thethe
PRS secretsin the Phase IIComSH, and follows up with an honest execution ofsZKAOK for this commitment. Since
ComSH is a statistically hiding commitment scheme, andsZKAOK is statistical zero knowledge we getν(2) ≡S ν(3)

and∀` (b(2)
` , α

(2)
` , y`) ≡S (b(3)

` , α
(3)
` , y`).

Stage 4: The heart of the proof is in buildingH4, which does not need the left provers’ inputswj any more. It
works likeH3, except that in all the simulated left hand side sessions, the prover commits to the all zeros string in
the the Phase IVComNM, and uses theComSH commitment as the witness in the the Phase VsZKAOK instead of the
witnesseswj . We delay the main part of the proof, which requires the non-malleability property of the commitment
schemeComNM, and instead state the following claim first.

Claim 2.3. ν(3) ≡C ν(4) and∀` (b(3)
` , α

(3)
` , y`) ≡C (b(4)

` , α
(4)
` , y`).
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Stage 5:Finally we describe the simulator-extractorS. First it runsH4 to produce a view of the adversary,ν(4). Then
it extracts the valuesα(4)

` , for ` = 1, . . . ,mR. For extracting thus, for each̀, S will considerH4 as a standalone
adversaryA∗

` making a single commitment to an external receiver, and then invokes the extractor with (appropriately
reformatted) viewν(4) andA∗

` as the committer which produced this view.
Unfortunately this is complicated by the fact that in the PRS simulation,H4 needs to run look-ahead threads and

rewind before it can run the main thread. Thus a straight-forward construction ofA∗
` will require it to be able to rewind

the external receiver. Nevertheless, using the condition that the receiver in theComNM protocol uses no private coins
till the knowledge determining message, we show how the PRS simulation can be continued without having to rewind
the external receiver.

The final output ofS is (ν, β1, . . . , βmR) whereβ` are the values extracted as described above. By the extraction

guarantee, if according toν, V` accepted the proof, and in particular accepted the Phase IV commitment, thenβ` = α
(4)
`

except with negligible probability.
From the above, we getν(4) ≡C ν(1), where the former is the view generated byS and the latter is identical to

that of the adversaryA in an actual execution. Further, we have∀`
(
b
(4)
` = 1

)
=⇒

(
R(x`, α

(4)
` ) = 1

)
except with

negligible probability. This follows from Equation 1, the fact that(b(4)
` , α

(4)
` ) ≡C (b(1)

` , α
(1)
` ) as implied by the above,

and the fact that the condition
(
b
(·)
` = 1

)
=⇒

(
R(x`, α

(·)
` ) = 1

)
can be efficiently checked.

This completes the proof except for the proof of Claim 2.3.

2.1.1 Proof of Claim 2.3

This is the most delicate part of the proof, which reduces the concurrent non-malleability of our zero-knowledge
protocol to (non-concurrent) non-malleability of the commitment schemeComNM. The goal is to show that in moving
from the hybridH3, which uses the real left hand side witnesses in the simulation, toH4 which uses the alternate PRS
witnesses and commits to all-zeros strings instead of the witnesses, the values committed to by the adversary do not
change adversely. Conceptually the difficulty is in separating the effect of the modifications in the left sessions from
those in the right sessions. The technical difficulties stem from the somewhat intricate nature of PRS simulation which
causes change at some point in the simulation to propagate in subtle ways.

Before proceeding we point out, intuitively, why wedo notrequireconcurrentnon-malleability forComNM: all we
require is that, inH4, for each right hand session, the commitment made usingComNM continues to be a witness, if it
used to be a witness inH3; wedo notrequire that the entire set of committed values remain indistinguishable jointly.

We move fromH3 to H4 using a carefully designed series of hybrid simulatorsH̃i:1 andH̃i:2. To describe these
hybrids, first we introduce some notation. In the PRS simulation consider numbering (in order) all the occurrences of
the first message (FM) in the Phase IVComNM in the left hand side sessions. Note that in a full PRS execution, due
to the look-aheads, we may have multiple FMs being sent by the same left hand side prover (though only one in each
thread). Further, in the simulation, for anyi, the left hand prover sending FMi is a random variable with support on
all mL provers: this is because in each thread, the adversarydynamically schedulesthe protocol sessions based on the
history of messages in the thread (and its random tape, which we have fixed). We shall denote the index of the left hand
prover sending FMi by p(i). We will refer to the instances ofsZKAOK provided byPp(i) in threads passing through
FMi, as “belonging” to FMi.

We defineH̃0:2 to beH3 and letH4 be H̃N :2, whereN is an upperbound on the number of FMs in the PRS
schedule. Fori = 1, . . . , N , the simulatorsH̃i:1 andH̃i:2 are as follows:
H̃i:1: Exactly like H̃i−1:2, except that for all thesZKAOK belonging to FMi, the prover will use the corresponding

PRS secret as the witness (instead of usingwp(i)). If the PRS secret is not available, then the simulator fails5.

H̃i:2: Exactly likeH̃i:1, except that in FMi the prover commits to the all-zeros string (instead ofwp(i)) and continues
the execution accordingly.

5as it would have already failed inH3
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For i = 1, . . . , N we define random variables̃ν(i:1) and{b̃(i:1)
` , α̃

(i:1)
` }mR

`=1 and ν̃(i:2) and{b̃(i:2)
` , α̃

(i:2)
` }mR

`=1 anal-

ogous toν(1) and {b(1)
` , α

(1)
` }mR

`=1. Note that we need to show thatν̃(0:2) ≡C ν̃(N :2) and∀` (b̃(0:2)
` , α̃

(0:2)
` , y`) ≡C

(b̃(N :2)
` , α̃

(N :2)
` , y`). We do this via the following sequence:

ν̃(i−1:2) ≡C ν̃(i:1) (2)

ν̃(i:1) ≡C ν̃(i:2) (3)

∀` (b̃(i−1:2)
` , α̃

(i−1:2)
` , y`) ≡C (b̃(i:1)

` , α̃
(i:1)
` , y`) (4)

∀` (b̃(i:1)
` , α̃

(i:1)
` , y`) ≡C (b̃(i:2)

` , α̃
(i:2)
` , y`) (5)

It is not hard to argue that going from̃Hi−1:2 to H̃i:1, the main thread remains statistically indistinguishable. One
subtlety here is that though the Phase VsZKAOK remains statistically indistinguishable when the alternate witness is
used, indistinguishability does not hold when multiple threads are considered together. But the only way a thread can
affect subsequent threads is through the availability of the PRS secrets at the right points in the simulation. Then, by the
refinement mentioned after Lemma 2.1, it will hold that the PRS secrets will continue to be available as required except
with negligible probability. Thus each individual thread, and in particular the main thread, continues to be statistically
indistinguishable between the simulations byH̃i−1:2 andH̃i:1. This in turn implies both equations (2) and (4).

Equation (3) follows from the hiding property ofComNM. However to prove equation (5), this is not enough,
because only the right hand side commitments appear in the simulated view and not the committed values themselves
(which can be distinguishable even when the commitments themselves are indistinguishable). So now we build a
machineM` which will “expose” the incoming left hand side commitment fromPp(i) and the outgoing right hand side
commitment toV`. Then we shall use the non-malleability property ofComNM to argue that the values committed to
by M` in two experiments – one in whichPp(i) commits towp(i) and another in which to the all-zeros string – are

indistinguishable, and hence so will be the values committed toV` by H̃i:1 andH̃i:2.
But the precise argument is more involved, because we need to take into account whether the right hand commit-

ment toV` occurs before, after or overlapping with FMi (which is the first message ofPp(i)). The most interesting
case is when FMi occurs in the main thread, before the first message (or more precisely the determining messge) of
the commitment toV` is sent. The key step in buildingM` is being able to run the main thread of the PRS simulation
in H̃i:1 andH̃i:2 without having to rewind the external receiver or the committer. We show that given the way we
have defined the ordering on the FMs and the hybridsH̃i:1 andH̃i:2, M` can run the part of the main thread after FMi

without running any further look-ahead threads.
Once we buildM` it is routine to show that the non-malleability condition onComNM implies equation (5).

3 Impossibility result for concurrent non-malleable general functionalities.

In this section we sketch our negative result, showing that it isimpossibleto extend our result for zero knowledge to
every functionality. We’ll only sketch the proofs in this section, and refer the reader to Appendix B for the full details.

We need to show that there is some polynomial-time functionF , such that for every protocol implementingF ,
there’s a concurrent attack that can be carried in the real model and cannot be carried in the ideal mode, even in the
case where all honest parties’ inputs are chosen according to some (correlated) distribution and fixed in advance. Our
functionF will take two inputs and have one output. We call the party supplying the first input thesenderand the party
supplying the second input thereceiver. By our convention only the receiver gets the output of the combination. We’ll
defineF to be a combination of the zero knowledge and the oblivious transfer (OT) functionalities (an equivalent way
to state our results is that there are no pairs of protocols for zero knowledge and OT that compose with another). More
formally, let f : {0, 1}k → {0, 1}k be a one-way function (wherek is some security parameter) andRf be theNP-
relation{(x,w) : w = f(x)}. We letFZK(x◦w, x) = 1 if (x,w) ∈ R and zero otherwise. We letFOT (x1◦x2, b) = xb

wherex1, x2 ∈ {0, 1}k (that is, we use the variant of OT known as
(
2
1

)
string OT). The functionalityF will simply be

a combination ofFZK andFOT . That is, we’ll have an forF additional input bit specified by each party, and if both
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parties use zero for this bitF will apply FZK on the rest of the inputs, if both use oneF will apply FOT , and otherwise
(if they don’t agree on this bit)F will output⊥.

Our main theorem of this section is the following

Theorem 3.1. Assume thatf is a one-way function and letF be defined as above.LetΠ be any polynomial-time two
party protocol that computesF if both parties are honest. Then, there’s a polynomialt(·) such that for anyk there
exists distributionD on 2t = t(k) inputs forΠ, a concurrent schedulingS of t executions ofΠ, a polynomial-time
adversaryA, and a polynomial functionSECRETthat maps the inputs into{0, 1}k.

• In a concurrent execution oft copies ofΠ according to the scheduleS with the honest parties and the corrupted
parties receiving inputs chosen from the distributionD, the adversaryA outputs the value ofSECRETon the
inputs with probability1.

• In an ideal model, for any polynomial-time adversaryÂ that gets access to thet copies of the ideal OT function-
ality, with the honest parties’ inputs in these copies coming fromD, (andÂ receiving the inputs corresponding
to the corrupted parties) the probability that̂A outputs the value ofSECRETon the inputs is negligible, where
this probability is taken overD and the coins of̂A.

We note that since standalone OT implies the existence of one-way functions (and by Levin’s universal one-way
function, even existence of a particular functionf , see [GOL01]), andF subsumes OT, this theorem implies uncondition-
ally that no protocol can realize the functionalityF and be self-composable, even when honest-party inputs are from a
fixed distribution.

This is the first result ruling out composable protocols in the plain model for general (possibly non-black-box)
simulation, honest inputs fixed in advance, and without requiring composability also with other arbitrary protocols.
It’s somewhat surprising since in many previous settings, (UC-security [CLOS02], bounded composition [L IN03A, PAS04],
timing [KLP05], super-polynomial simulation [PS04, BS05]) obtaining a composable zero knowledge protocol implied
obtaining a composable protocol for general functionalities.

In fact, there is a natural candidate for such a protocol in the case of oblivious transfer: to transform the Naor-
Pinkas OT protocol [NP99] to handle malicious adversaries we only need one application of zero-knowledge proofs,
and in that application the receiver proves a statement that is independent of any messages sent to it by the prover (and
hence can be thought of as secret input that is fixed in advance). Thus, one may hope that by combining this protocol
with the zero knowledge argument of Section 2 would yield an implementation ofF . In fact, one can hope that if we
combine Naor-Pinkas OT with our zero knowledge and Yao’s garbled circuit protocol [YAO86], we might get a protocol
for computinganydeterministic function assuming that the inputs are fixed in advance, this is because in the execution
of the zero-knowledge proofs required by the compiler for security against malicious adversaries, no party ever needs to
use zero knowledge to prove statements that depend on the messages sent by the other party, and so there’s no adaptive
input selection of inputs to the zero knowledge protocol.

However, it turns out this is not the case. The problem in proving the security of this particular protocol is that
when performing the simulation and rewinding the zero-knowledge protocol, we may also rewind other executions
of the OT protocol, which is problematic in the case of an honest sender (as the security of the OT requires that the
receiver will only learn one of the sender’s inputs). Indeed, by the results of Lindell [L IN04], no black-boxsimulator can
work in this case. Nonetheless, the fact that the straightforward black-box simulation does not work, does not mean
that there’s no other more clever simulation to prove the security of this protocol. The results of this section will rule
out this possibility as well.

3.1 Proof sketch of Theorem 3.1

The proof of Theorem 3.1 proceeds in two stages:

First stage. First, (as warm-up) we prove that for every protocolΠZK for the zero knowledge functionality (for the
relationRf above), there exists an ideal two-party deterministic functionFΠ (that depends on the protocolΠZK) such
that a single instance ofΠZK executed concurrently with several ideal calls to copies ofFΠ will not be secure. (In the
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same sense as Theorem B.1, that for inputs chosen from some distribution and fixed in advance, an adversary can learn
a secret that she cannot learn ifΠZK was replaced with the ideal zero knowledge functionality.)

We note that ifFΠ were allowed to be areactivefunctionality or use adaptively chosen inputs, then this would be
the same setting as the results for impossibility of protocols that are secure under general composition or the “chosen
protocol attack”. That is, the results of [L IN03B] (and in fact implicitly earlier works such as [CAN01, CF01, CKL03, KSW97])
imply that for every zero knowledge protocolΠZK , we can find aprotocol P (depending onΠZK) such that the
concurrent execution ofΠZK andP is insecure in the above sense. In fact, the proof for this is quite simple— think of
the following scenario:

1 Alice and David are honest, Bob and Charlie are malicious and coordinate. A valuex is public and Alice and
David sharew such thatx = f(w).

2 Alice proves to Bob usingΠZK that she knowsw.
3 Charlie and David interact using the following protocolP : the protocolP tells David that if Charlie manages to

run protocolΠZK as the prover showing knowledge ofw, then David should sendw to Charlie.6

4 Clearly, ifΠZK andP are executed concurrently in this scenario than the malicious Bob and Charlie can learn
w, even though they would not have been able to learnw if ΠZK was replaced with an ideal call to theFZK

functionality.

Our main tool in transformingP into a non-interactive functionalityFΠ is to use Message Authentication Codes
(MACs) to force the adversary to make calls toFΠ in a certain order, imitating an interactive protocol. Thus, instead of
having one execution of the protocolP , we’ll have` executions of a non-reactive functionFΠ (where` is the number
of prover messages inΠZK). The sender ofFΠ will have as input a secret MAC key, randomness for the protocolP
above, and the secret inputw. If the receiver’s input is a partial transcriptp of P (with the last message being David’s)
with a valid tag onp, and an additional messagem of Charlie’s, thenFΠ will compute David’s next messagem′ on the
transcriptp ◦m, and will output the transcriptp ◦m ◦m′ and a tag on this message. One can see that getting access to
ideal calls forF is not more (and not less) helpful than interacting withP .

Second stage. The reason we’re not finished is not just becauseFΠ is a “less natural” functionality thanF , but also
– and more importantly – because the functionFΠ can (and will) depend onΠZK in its definition, its complexity and
its input size. To get the negative result that we want, we need to go further and exhibit a functionalityF that cannot
be implemented by anyΠ.

The second conceptual stage is to take this scenario of the protocolΠZK and functionalityFΠ and compile this
into a scenario where the only thing executed in the network is one copy of a zero knowledge protocol and many copies
of an OT protocol, with the honest parties’ inputs for these copies chosen from a set of predefined distributions. We
then argue that the previous real-world attack remains viable in this scenario and (more subtly) that it is still infeasible
to perform this attack if all these copies were replaced by ideal calls to the OT/ZK functionalities. SinceF is a
combination of these functionalities, the result follows.

For this stage we’ll use a variant of Yao’s garbled circuit technique [YAO86]. Note that unlike its typical usage, we
use here this technique to get anegativeresult (this is somewhat similar to what was done in [BGI+01]’s negative results
for software obfuscation).

The overall idea is as follows: We’ll set up a situation – inboththe ideal and real worlds – which could potentially
allow for the evaluation of any function, using a variant of the garbled circuit technique and ideal calls to an OT
functionality. But, we’ll set up the honest party inputs in such a way that the only functions that can be evaluated
mimic the functionalityFΠ described above. So here, the only functionalities are the ZK and OT functionalities, but
the predetermined honest party inputs depend on the specific protocolΠZK . Then, in the real world, the adversary will
always be able to win, whereas in the ideal world (whereΠZK is not being executed), the adversary cannot win. The
garbled circuits will not be sent out by any party (as we’re not allowed to do anything on the network except run the
protocol forF , and honest parties are not allowed to adaptively choose their inputs) but rather will be supplied to both
parties as a correlated input. See Appendix B for more details on how this step is implemented.

6The notations above assume thatf is one-to-one, but this makes no difference in the proof.
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Conclusions

In this paper, we show how to construct the first concurrent non-malleable zero-knowledge protocol, assuming only that
regular one-way functions exist. We also provide a new impossibility result regarding general functionalities, which
together with [L IN03B, L IN04], gives us a better idea of where the border is between what is and is not possible in the
plain model. An unfortunate consequence of the impossibility results is that we must move to alternative definitions
of security for general functionalities if we want to obtain composable protocols for broader classes of functionality
in the setting where there are no trusted parties or setup. One such definition was proposed in [PS04], by allowing
super-polynomial time simulation. The main limitation of this definitional framework concerns functionalities whose
definitionsinvolve cryptographic primitives (or otherwise rely on computational complexity assumptions to be mean-
ingful). For such functionalities, building on our techniques, one could hope to define and achieve security in a setting
that a polynomial-time simulator is given extra powers, such as limited rewinding of the ideal model. (Of course, when
relaxing security care must be taken that the definition still provides meaningful security guarantees for applications.)
In fact, one may hope for a general clean definition that would provide the best of all worlds: for functionalities such as
zero-knowledge provide full self composition, for functionalities where this is not possible provide some relaxed no-
tions of security, and perhaps for functionalities that take as extra inputs a common reference string or input for a hard
problem provide UC security or quasi-polynomial security. That is, there is hope for a clean meta-theorem from which
one could derive results such as [CLOS02, BS05] and our current result by just plugging in the appropriate functionality.
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A Details: A concurrent non-malleable zero knowledge protocol

Definition A.1. A protocol is a Concurrent Non-Malleable Zero Knowledge (CNMZK) argument of knowledge for
membership in anNP languageL with witness relationR (that is,y ∈ L iff there existsw such thatR(y, w) = 1), if
it is an interactive proof system between a prover and a verifier such that

Completeness:if both the prover and the verifier are honest, then for every(y, w) such thatR(y, w) = 1, the verifier
will accept the proof, and

Soundness, Zero-Knowledge and Non-Malleability:for every (non-uniform PPT) adversaryA interacting with provers
P1, . . . , PmL in mL “left sessions” and verifiersV1, . . . , VmR in mR “right sessions” of the protocol (withA
controlling the scheduling of all the sessions), there exists a simulatorS such that for every set of “left inputs”
y1, . . . , ymL , we haveS(y1, . . . , ymL) = (ν, z1, . . . , zmR), such that

1 ν is a simulated view ofA: i.e., ν is distributed indistinguishably from the view ofA (for any set of
witnesses(w1, . . . , wmL) thatP1, . . . , PmL are provided with).

2 For alli ∈ {1, . . . ,mR}, if in the i-th right hand side session inν the common input isxi and the verifierVi

accepts the proof, thenzi is a valid witness to the membership ofxi in the language, except with negligible
probability (zi = ⊥ if Vi does not accept.)

Further, we call the protocol a black-box CNMZK if there exists a universal simulatorSBB such that for any adversary
A, it is the case thatS = SABB satisfies the above requirements.

Note that the second condition reduces to regular (stand-alone) zero knowledge property whenmL = 1 andmR =
0, and reduces to regular (stand-alone) soundness property whenmL = 0 andmR = 1. Furthermore, this condition
reduces to concurrent zero knowledge [DNS98, RK99] when mL = poly and mR = 0; it reduces to basic (“non-
concurrent”) non-malleability [DDN91] whenmL = mR = 1.

This definition resembles the notion of simulation-extractablity used in [PR05A] for concurrent non-malleable com-
mitments.

A.1 UC-like definition of CNMZK

We can also write this definition in the language of the UC-framework, to further illustrate the level of security and
composition it gives. We do not get into the details of modeling the Network, but instead keep our description at an
informal level. For more details of modeling see [CAN05, PRA05].

The functionality in question isFR
ZK , the natural zero-knowledge functionality for membership inL: it accepts a

pair (y, w) from P and sends(y, R(y, w)) to V , which it outputs.
The nature of the security is essentially described by the kind of environments allowed in the security definition.

We call a PPT environment a “CNM environment” if it behaves as follows:

• It interacts arbitrarily with the adversary, and selects many pairs of parties(P, V ). For each pairZ picks(y, w)
such thatR(y, w) = 1, and handsy to bothP andV , andw to P .

• Then it initiates each pair to interact with an instance ofFR
ZK . After this point the environment does not send any

messages to the adversary.

• FinallyZ outputs a bit.

Note that since there will be no automatic composition theorem available, the environment already invokes multiple
instances of the functionality. Also note that there are no other protocols or functionalities being invoked, emphasising
the fact as we are dealing only with self-composition.

In the “ideal” execution, when initiated with input, the parties interact withFR
ZK . In the “real” execution the parties

use the protocol in question. All scheduling is controlled adversarially.
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Then the definition of security is that there exists a simulatorSBB such that for all adversariesA andany CNM
environmentZ, the output ofZ in the real execution is indistinguishable from that in the ideal execution.

A.2 Result from [PRS02]

We adapt the main argument from [PRS02] for use in our protocol. Consider the following protocol segment:

1 PRS Commitment: The verifier picks a (sufficiently long) random stringσ, and preparesk · t(k) (wheret(k)
is anyω(log k) function) pairs of secret shares(α0

ij , α
1
ij) for 1 ≤ i ≤ k, 1 ≤ j ≤ t(k) such that for all(i, j)

we haveα0
ij ⊕ α1

ij = σ. Then it commits toσ and(α0
ij , α

1
ij)ij using a statistically binding commitment scheme

ComPRS.

2 PRS Challenge-Response:This is followed byt(k) rounds of randomk-bit challenges by the prover. In re-
sponse, for each(i, j), if the i-th bit in thej-th challengerij = b then the verifier opens the commitment toαb

ij

in that round.

3 The prover considers the preamble to have “concluded.”

4 PRS Opening: The verifier opens all the commitments made in the PRS Commitment step, and the prover
verifies consistency.

5 The prover “accepts” the preamble.

There can be other messages in between, as long as the challengesrij are picked randomly independent of previous
messages. In particular, as in our case, there can be messages in the protocol between the prover concluding the
preamble and the verifier opening the commitments.

The PRS simulator (for our purposes) is the following program which “simulates” multiple (polynomially many in
the security parameter) concurrent sessions of the protocol between honest provers and a combined adversarial verifier,
APRS. The simulator gets inputs of all the parties in all the sessions, and it runs the honest provers and the adversarial
verifier internally.7 In the end it produces an ordered list of “threads of execution.” A thread of execution consists of
views8 of all the parties, such that the following hold.

• Each thread of execution is a perfect simulation of a prefix of an actual execution.

• The last thread, called themain thread, is a perfect simulation of a complete execution (i.e., until all the parties
terminate); all other threads are calledlook-ahead threads.

• Each thread shares a (possibly empty) prefix with the previous thread, and is derived by running the honest
parties with fresh randomness after that point.

The aim of the PRS simulator is, for each PRS commitment that it comes across in any session in any thread, to
extract the committed valueσ (referred to as the “PRS secret”) before the preamble isconcludedin that thread. The
extraction is achieved by observing the adversary’s messages in multiple previous threads. If it fails to extract the PRS
secret in any session in a thread,and the execution goes on toacceptthe preamble of that session in that thread, then
the simulation is said to “get stuck.” [PRS02] guarantees that the probability of the PRS simulation getting stuck is
negligible.

7Note that the “simulator” as described here is given all the inputs to all the parties. Later, after introducing this simulator into the sequence
of hybrids in our proof, we shall show how to get rid of these inputs.

8Here, and elsewhere, by the view of a party we mean the sequence of its internal states during the execution, including the messages received
and sent by it.
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Lemma A.2. (Adapted from [PRS02]) Consider proversP1, . . . , Pm and an adversarial verifierAPRSrunningm ses-
sions of a protocol with the PRS preamble as described above, wherem is any polynomial in the security parameter
k. Then except with negligible probability, in every thread of execution output by the PRS simulator, if the simulation
reaches a point where the proverPi accepts the PRS preamble withσ as the secret in the preamble, then at the point
when the preamble was concluded, the simulator would have already recorded the valueσ.9

In fact [PRS02] prove a further refinement of this lemma (that we will need): instead of the simulator running each
thread exactly as in the original execution, if each thread (individually) is executed in an indistinguishable way,10 the
lemma still holds (This is what allows [PRS02] to show that indistinguishable simulation is possible.). It is important
that here we require the indistinguishability requirement only on aper threadbasis. In particular the joint distribution
of the threads in the latter simulation is allowed to be distinguishable from the joint distribution of the threads in the
original simulation.

We shall adapt the PRS simulator to our setting in which an adversaryA is engaged in concurrent left hand side
sessions as the verifier, while concurrently playing the prover in multiple right hand sessions. We could build a pre-
liminary simulator (which is provided with inputs of all the parties) for this situation by considering all the right hand
verifiers also as part of an adversaryAPRS before invoking the PRS simulator. However there is a minor technicality
that needs to be taken into account. In [PRS02], since the adversary is arbitrary, it may very well be assumed to read
its entire random tape up front. Thus in all the threads (all of which may share a common non-empty prefix) the PRS
simulator in [PRS02] uses the same random tape for the adversary. But it is easy to see that the analysis in [PRS02]
works even with probabilistic adversaries which do not read their entire random tapes initially, and in that case the
PRS simulator can use fresh randomness for the unread parts of the random tape when simulating a new thread. This
is important for us because in our simulation we will need to use fresh randomness for the right hand side verifiers in
different threads (except during the shared prefixes). So in our use of the PRS simulator only the random tape of the
original (arbitrary) adversaryA is fixed across all the threads while the rest ofAPRS (i.e., the right hand side verifiers)
is given fresh randomness in different threads.

Another equivalent (and in some sense a more natural) way to formulate this is to consider the right hand side
verifiers as part of the honest party and, as in the original PRS simulator, to fix the random tape of the adversary across
all threads. Later in our proof, we will have chance to refer to this formulation.

A.3 Non-Malleable Commitment

The other ingredient we need is a statistically binding non-malleable commitment (not necessarily concurrent non-
malleable) with an “extractability” property. More precisely, we require an interactive commitment protocolComNM,
between a “sender” (whose input it wants to commit to) and a “receiver” (with no input) satisfying the following
properties.

1 Statistical Binding: The protocol has a determining message from the sender to the receiver (typically the first
message from the sender) which is the first message containing information about the value to be committed. If
either the sender or the receiver is honest, the determining message is information theoretically binding except
with negligible probability.

For clarity in presentation we shall require that the first message in the protocol is itself the determining message.
(However see Section A.5.2.)

2 (Non-concurrent) Non-Malleability: Consider the following two experiments in which an adversaryM partic-
ipates in one “left session” of the protocol as the receiver, and in one “right session” as the sender.M picks a

9Unlike in [PRS02], in our preamble, the PRS commitment is statistically binding. So, except with negligible probability, ifPi accepts the
preamble, there is a well-defined valueσ in the PRS commitment, and it is this value that the prover accepted as the secret in the preamble. We
point out that our case is slightly simpler than the original analysis in [PRS02] in that we are interested in arguments (not proofs), and hence the
commitment by the verifier can be statistically binding.

10In our applications, it is enough if this holds when the indistinguishability is statistical; but in fact this refinement holds even if the indistin-
guishability is only computational. Indeed in [PRS02] the argument is used for computationally indistinguishable executions.
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valuew and gives it to the left senderP . In the first experimentP commits tow while in the second experiment
it commits to the all-zeroes string. We define the value of the experiment as(τ, α), whereτ is the output ofM
andα is the value in the determining message of the right-hand-side commitment. (We sayα = ⊥ if there was
no determining message or if it did not uniquely determine the committed value).

The non-malleability property is that the values of the two experiments are distributed computationally indistin-
guishably.

For the sake of convenience we state the hiding property explicitly, though it is implied by the non-malleability
property. The two experiments are defined as before, except thatM does not participate in a right hand execution.
Instead, after receiving the commitment fromP , M produces an output, which is the value of the experiment.
Then the hiding property requires that the values of the two experiments are computationally indistinguishably
distributed.

3 (Stand-alone) Extractability: The extractability requirement is that there is an efficient extractor such that given
an adversary and its view from a random execution of the protocol with an honest receiver, then, except with
negligible probability – the probability being over the coins of the adversary and the verifier in the view, as well
as that of the extractor, if it is randomized – the extractor outputs the value in the commitment, if according to
the view the receiver accepts the commitment.

In fact, we require a slight extension to this by requiring that the extraction can work on a prefix of the protocol
where the verifier is public-coin. More formally, there is a message from the sender in the protocol called the
“knowledge-determining message” (KDM), such that given an adversary and its view during a random execution
of the protocol till (and including) the KDM, the extractor will output the committed value, if according to the
view the verifier was still accepting (i.e., it did not abort). We require that prior to receiving the KDM the receiver
does not have any private coins.

A.3.1 Available Non-Malleable Commitment Protocols

For simplicity, first we consider a model in which all parties have distinct identities11, and all communication is over
authenticated channels.

Pass-Rosen Commitment: The commitment protocol in [PR05A] is as follows: first the sender commits to its input
usinganystatistically binding commitment scheme; then it gives a proof of knowledge of the input and randomness
used in this commitment using a non-malleable ZK protocolnmZKID, whereID is the identity of the prover.

Though [PR05A] states their definition without an extraction requirement, in their proof they show how to do ex-
traction as well. But in fact we observe that another simple extractor (so that the protocol is clearly public coin until
the knowledge-determining message) can be derived by replacing the first message in their protocol – namely the the
statistically binding commitment – by aninteractivestatistically binding commitment, which consists of a regular non-
interactive statistically binding commitment (which can be based on any 1-1 one-way function) followed by a ZK proof
of knowledge that it knows the contents of the commitment. Using a ZKPOK of super-constant rounds we can obtain
a deterministic polynomial time extractor. This can be done, for instance, by having aω(logk)-round sequential copies
of the basic Hamiltonicity protocol [BLU87]. (see e.g. [GOL01]).

DDN Commitment: Surprisingly, though we are in a concurrent setting, our requirement of non-malleability on the
commitment schemeComNM is in the plain non-malleability setting (i.e., one execution each on the left hand and
right hand sides). We show that the original non-malleable commitment scheme by Dolev, Dwork and Naor [DDN91]

11This assumption can be removed (as originally done in [DDN91]) by letting the honest parties pick a (signing key, verfication key)-pair
for a signature scheme, and having the transcript of the entire protocol signed using this key (only the provers need to sign). Then the one
case excepted from the definition of non-malleability is whenA copies an entire left execution as a right execution, by playing a router for the
messages.
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satisfies our requirements, when the initial (statistically binding, non-interactive) commitment phase of their protocol
is augmented to have a ZKPOK, as above. As we mentioned above this modification takes care of the extraction
requirement, while retaining the non-malleability property proven there.

Next we claim that the non-malleability property of the DDN protocol implies the non-malleability property that
we require. First weadaptthe definition from [DDN91] as follows:

Definition A.3. (DDN Non-Malleable Commitment. Adapted from [DDN91].) A statistically binding commitment
protocol is said to be DDN-non-malleable if for every (non-uniform PPT) adversaryADDN, there exists a simulator
SDDN such that for all (non-uniform) PPT machinesR that take three inputs and outputs a single bit, the outputs of the
following two experiments are indistinguishable from each other.

Experiment 1: ADDN first outputs a stringw. Thena is set to bew or the all-zeros string, chosen unifromly at
random. An honest senderP commits toa to A. MeanwhileADDN commits to some stringα to an honest receiver
V . (α is well-defined, possibly as⊥, because the commitment is statistically binding). Also at the endA outputs a
plain-textτ . The output of the experiment isR(a, α, τ).

Experiment 2: SDDN outputs a stringw anda is set to bew or the all-zeros string, chosen unifromly at random. Then
SDDN commits to some stringα to an honest receiverV and outputs a plain-textτDDN. The output of the experiment is
R(a, α, τDDN).

Here we have simplified the DDN definition by replacing a general distribution by a uniform distribution over a
string w and the all-zeros string. Without loss of generality we assume thatw is chosen deterministically (but non-
uniformly). Also, we have slightly strengthened the definition to include a plain-text outputτ produced by the adversary
as input toR. To see that the protocol in [DDN91] does satisfy this strengthened requirement, note that the proof there
first uses a “knowledge extractor” to extractα, which could be modified to output(τ, α) instead.

Now suppose a commitment protocol did not satisfy the non-malleability we require. Then, there is an adversary
A who gives a valuew, accepts a commitment on the left to eitherw or the all-zero string, and makes a commitment
on the right to computationally distinguishable values on the right, and outputs a stringτ . Let the value committed to
on the right beαw andα0. We have a PPT distinguisherD which outputs a single bit such thatD(τ, αw) 6≡C D(τ, α0).
In other words,|πw − π0| is not negligible, whereπw andπ0 stand forPr[D(τ, αw) = 1] andPr[D(τ, α0) = 1]
respectively. Note that this can be true only ifw is not the all-zeros string. Now defineADDN to be the same asA, but
with τDDN = (τ, w). Define

R(a, α, (τ, w)) =

{
D(α, τ) if a = w

1−D(α, τ) otherwise.

Then the probability of the output of the first experiment being 1 is1
2 (πw + (1− π0)) = 1

2 + 1
2(πw − π0), where as

the probability of the second experiment being 1 is1
2 (sincea = w with probability 1

2 ; here we use the fact thatw is
not the all-zeros string). Since|πw−π0| is not negligible, the outputs of the two experiments are not indistinguishable.
Hence we conclude that if the protocol is not non-malleabile in the form we require, then it is not DDN-non-malleable
either.

A.4 Other Ingredients

The other ingredients we use are

1 A statistically (or perfectly) hiding commitment schemeComSH.

2 A statistical (or perfect) ZK argument of knowledgesZKAOK, for proving knowledge of witness for membership
in anyNP language.
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The statistically hiding commitment schemeComSH can be achieved in a constant-round protocol using collision-
resistant hash functions or claw-free permutations or, at the expense of havingO(k) rounds, using one-way permuta-
tions [NOVY92] (see also Section 4.8 of [GOL01]), and even using only regular one-way functions by the recent result of
Haitneret al.[HHK+05]. Given such a commitment scheme, we getsZKAOK as required with a factorω(log k) blow
up in the number of rounds, in same manner as our construction of a ZKPOK above, usingω(log k) sequential copies
of the Hamiltonicity protocol, but where the prover’s commitments in the Hamiltonicity protocol are made using the
statistically hiding commitment schemeComSH. This sZKAOK enjoys a strict polynomial-time extraction procedure
with negligible probability of failure.

We note that all our ingredients are realizable under the assumption that regular one-way functions exist (and in
particular under the assumptions that one-to-one one-way functions exist).

A.5 Our Protocol

Consider anNP-complete languageL with a witness relationshipR. The prover and verifier receive a common input
y and the prover receives a witnessw such thatR(y, w) = 1. The protocolCNMZK is described below.

Phase I: PRS preamble from Section A.2 up to the point where the proverconcludesthe preamble.

Phase II: Prover commits to the all-zero string usingComSH. Then it usessZKAOK to prove the knowledge of the
randomness and inputs to this execution ofComSH.

Phase III: Continue the PRS preamble until the prover accepts the preamble. Let the secret in the preamble (as
revealed by the verifier) beσ.

Phase IV: Prover commits to the witnessw usingComNM.

Phase V: Prover proves the following statement usingsZKAOK: either

• the value committed to in Phase IV isw such thatR(y, w) = 1, or

• the value committed to in Phase II isσ.

It uses the witness corresponding to the first part of the statement.

Theorem A.4. ProtocolCNMZK is a black-box concurrent non-malleable zero knowledge argument for membership
in theNP languageL (Defintion A.1).

Proof. It is easy to see that the protocol satisifies the completeness condition. Below we shall build a simulator-
extractor, which outputs a simulated view of the adversary’s view along with witnesses for all the successful right hand
side proofs in the simulated view, as required by the second condition in Defintion A.1.

We build the simulatorS in stages, via intermediate simulatorsHi, for i = 1, . . . , 4. Hi outputs a simulated view
ν(i). (S will in addition output a list of witnesses.) We define2mR random variables{b(i)

` , α
(i)
` }mR

`=1, whereb
(i)
` is a

bit denoting whether according toν(i), V` accepted the proof from the adversary or not, andα
(i)
` is the value contained

in the Phase IV commitmentComNM received byV` (as determined by the determining message; if there is no unique
value, then it is defined to be⊥).
Stage 1:H1 gets all the inputs toP1, . . . , PmL as well as the inputs toA. It internally runs the (honest) programs of
P1, . . . , PmL , as well the honest program for the verifiersV1, . . . , VmR , to generateA’s view ν(1). The simulation is
perfect.

Also one can show that due to the knowledge soundness of thesZKAOK scheme used in Phase II and Phase V, if
V` accepts the proof in thè-th right hand session in the simulated viewν, then, except with negligible probability, the
Phase IV commitment (which is statistically binding) in that session indeed contains a valid witnessz` to the statement
x`. (This follows from a hybrid argument for themR right hand side sessions.) This is stated in the claim below; a
detailed proof follows.
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Claim A.5.

∀`
(
b
(1)
` = 1

)
=⇒

(
R(x`, α

(1)
` ) = 1

)
(6)

except with negligible probability.

Proof. Fix ` ∈ {1, . . . ,mR}. First, fromH1, construct a standalone proverP ∗ which interacts withV` alone. This
is done by including everything simulated byH1 exceptV` as part ofP ∗, so that an interaction ofP ∗ with an honest
verifier V` is identical to the execution ofH1. We need to argue that ifV` accepts the proof byP ∗, then except with
negligible probability, the Phase IV commitment made byP ∗ is a valid witnessz` to the statementx`. Now we consider
the following experiment. EngageP ∗ in an execution with an honest verifierV` which uses a random PRS secretσ.
Then, ifV` accepts the proof fromP ∗ build two standalone proversP ∗

1 andP ∗
2 as follows.P ∗

1 is a copy ofP ∗ at the
point where it began thesZKAOK in Phase II.P ∗

2 is a copy ofP ∗ at the point where it began thesZKAOK in Phase V.
Now run the extractor forsZKAOK onP ∗

1 andP ∗
2 . First we observe that from the hiding property ofComPRS it follows

that the probability of the extractor onP ∗
1 returning (an opening or explanation ofComSH as a commitment to)σ is

negligible. Secondly we observe that the computational binding ofComSH implies that the probability of extractor on
P ∗

1 returning an opening to something other thanσ andthe extractor onP ∗
2 returning an opening toσ is negligible: this

is because, otherwise we obtain two different ways to openComSH. Finally by the knowledge extractability propert of
sZKAOK we observe that the probability of (V` accepting and)P ∗

1 not returning some opening ofComSH is negligible;
also that ofP ∗

2 returning neither an opening ofComSH to σ nor an opening of the Phase IVComNM commitment to a
valid witness forx` is negligible. Together these imply that the probability ofV` accepting the proof and the Phase IV
ComNM being not to a valid witness forx` is negligible.

Stage 2:H2 works just likeH1, but it also does the PRS look-aheads and records the PRS secrets. If the simulation
reaches a point where a proverPi accepts the PRS preamble withσ as the secret in the preamble, and at the point when
the preamble was concluded, the simulator had not recorded the valueσ, the simulator aborts. Otherwise it outputs
the view of the adversary in the main thread of this simulation asν(2). If the simulator did not check for the aborting
condition, the view generated is identically distributed as in the simulation byH1. By Lemma A.2 we know that the
probability of aborting is negligible. Hence, we have

ν(1) ≡C ν(2)

∀` (b(1)
` , α

(1)
` , y`) ≡C (b(2)

` , α
(2)
` , y`).

Stage 3:H3 works likeH2, except that in all the simulated left hand side sessions, the prover commits to thethe
PRS secretsin the Phase IIComSH, and follows up with an honest execution ofsZKAOK for this commitment. Since
ComSH is a statistically hiding commitment scheme, andsZKAOK is statistical zero knowledge we get

ν(2) ≡C ν(3)

∀` (b(2)
` , α

(2)
` , y`) ≡C (b(3)

` , α
(3)
` , y`).

Stage 4:H4 works likeH3, except that in all the simulated left hand side sessions, the prover

• commits to the all zeros string in the the Phase IVComNM, and

• uses theComSH commitment as the witness in the the Phase VsZKAOK instead of the witnessesw`.

Claim A.6.

ν(3) ≡C ν(4)

∀` (b(3)
` , α

(3)
` , y`) ≡C (b(4)

` , α
(4)
` , y`).
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Hereν(4) and{b(4)
` , α

(4)
` }mR

`=1 are defined analogously to the case ofH1. We shall prove this claim shortly, using a
carefully designed series of hybrids. It is in this part of the proof that we shall require the non-malleability property of
the commitment schemeComNM.
Stage 5:Finally we describe the simulator-extractorS. First it runsH4 to produce a view of the adversary,ν(4). Then
it extracts the valuesα(4)

` , for ` = 1, . . . ,mR.
For this we take the view that in the PRS simulator all the honest parties includingV` are considered part of the

prover. Then, for each̀, S will considerH4 as a standalone adversaryA∗
` making a single commitment to a receiver.

The adversaryA∗
` will contain the adversary and all of the honest parties simulated byH4, except the part ofV` in the

main thread which receives the Phase IV commitmentComNM. A∗
` terminates execution after sending the knowledge-

determining message (KDM) to the external verifier.
Note that some of the PRS look-ahead threads simulated byH4 will share a prefix with the main thread. Thus the

interaction ofA∗
` with the external receiver (which forms part of the main thread) may define parts of these look-ahead

threads as well. If the KDM toV` in the main thread does not occur in the shared prefix with a look-ahead thread,
thenH4 would have created this thread before reaching the KDM. HenceA∗

` also needs to create this thread before
terminating. For simulating such a look-ahead thread which shares some prefix with the interaction with the external
receiver,A∗

` should be able to internallycontinuea prefix of the interaction with an external receiver where the prefix
does not extend to the KDM. This is possible because of our requirement that prior to the KDM the receiver inComNM

does not use any private coins. So at the pointA∗
` needs to continue this prefix as a look-ahead, there is no secret state

of the receiver that it needs to know. It simply continues the look-ahead thread using fresh coins for the verifier. Thus
A∗

` is indeed well-defined.
S constructs the view ofA∗

` (by having kept track of the internals in the run ofH4) and invokes the extractor for
ComNM, with A∗

` and this view. The final output ofS is (ν, β1, . . . , βmR) whereβ` are the extracted values. By the
extraction guarantee, if according toν, V` accepted the proof, and in particular accepted the Phase IV commitment,
thenβ` = α

(4)
` except with negligible probability.

Note that from above displayed relations,ν(4) ≡C ν(1), where the former is the view generated byS and the latter
is identical to that of the adversaryA in an actual execution. Further, we have

∀`
(
b
(4)
` = 1

)
=⇒

(
R(x`, α

(4)
` ) = 1

)
except with negligible probability. This follows from Equation 6, the fact that(b(4)

` , α
(4)
` ) ≡C (b(1)

` , α
(1)
` ) as implied

by the above displayed relations, and the fact that the condition
(
b
(·)
` = 1

)
=⇒

(
R(x`, α

(·)
` ) = 1

)
can be efficiently

checked.
This completes the proof except for the proof of Claim A.6.

A.5.1 Proof of Claim A.6

This is the most delicate part of the proof, which reduces the concurrent non-malleability of our zero-knowledge
protocol to (non-concurrent) non-malleability of the commitment schemeComNM. The goal is to show that in moving
from the hybridH3, which uses the real left hand side witnesses in the simulation, toH4 which uses the alternate PRS
witnesses and commits to all-zeros strings instead of the witnesses, the values committed to by the adversary do not
change adversely. Conceptually the difficulty is in separating the effect of the modifications in the left sessions from
those in the right sessions. The technical difficulties stem from the somewhat intricate nature of PRS simulation which
causes change at some point in the simulation to propagate in subtle ways.

Before proceeding we point out that why wedo notrequireconcurrentnon-malleability forComNM is, intuitively,
because all we require is that, inH4, for each right hand session, the commitment made usingComNM continues to
be a witness, if it used to be to a witness inH3; we do not require that the entire set of committed values remain
indistinguishable jointly.

We move fromH3 to H4 using a carefully designed series of hybrid simulators. To describe these hybrids, first
we introduce some notation. In the PRS simulation consider numbering (in order) all the occurrences of first message
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(FM) in the Phase IVComNM in the left hand side sessions. Note that in a full PRS execution, due to the look-aheads,
we may have multiple FMs being sent by the same left hand side prover (though only one in each thread). Further, in
the simulation, for anyi, the left hand prover sending FMi is a random variable with support on allmL provers: this is
because in each thread, the adversarydynamically schedulesthe protocol sessions based on the history of messages in
the thread (and its random tape, which we have fixed). We shall denote the index of the left hand prover sending FMi

by p(i).
Consider a FM and all threads passing through it (i.e., all threads which share a prefix containing this FM). Suppose

this FM belongs to a left hand session with proverPj . In each of the threads, the session withPj may go on to reach
Phase V. We will refer to these instances ofsZKAOK as “belonging” to this particular FM.

Main Thread

A Look-Ahead Thread

FM1

FM2

FM3
FM4

FM5

FM6

A

B

C

D

Z

E

Figure 1: A schematic representation of the threads in a PRS simulation. Here the segment AB represents the first
thread and AZ the last or main thread (highlighted with dotted lines). AB, AC, AD, AE are all look-ahead threads.
Also marked are points where the FMs (first messages of Phase IVComNM from A to the right hand side verifiers)
occurred during this simulation. Note the order in which FMs are numbered.

Now we can describe our intermediate hybridsH̃i:1 andH̃i:2. We defineH̃0:2 to beH3 and letH4 beH̃N :2, where
N is an upperbound on the number of FMs in the PRS schedule (N = O((mLt(k))2) suffices). Fori = 1, . . . , N , the
simulatorsH̃i:1 andH̃i:2 are as follows:

H̃i:1: Exactly like H̃i−1:2, except that for all thesZKAOK belonging to FMi, the prover will use the corresponding
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PRS secret as the witness (instead of usingwp(i)). If the PRS secret is not available, then the simulator fails12.

H̃i:2: Exactly likeH̃i:1, except that in FMi the prover commits to the all-zeros string (instead ofwp(i)) and continues
the execution accordingly.

For i = 1, . . . , N we define random variables̃ν(i:1) and{b̃(i:1)
` , α̃

(i:1)
` }mR

`=1 andν̃(i:2) and{b̃(i:2)
` , α̃

(i:2)
` }mR

`=1 analo-

gous toν(1) and{b(1)
` , α

(1)
` }mR

`=1. Note that we need to show that

ν̃(0:2) ≡C ν̃(N :2)

∀` (b̃(0:2)
` , α̃

(0:2)
` , y`) ≡C (b̃(N :2)

` , α̃
(N :2)
` , y`).

We do this via the following sequence:

ν̃(i−1:2) ≡C ν̃(i:1) (7)

ν̃(i:1) ≡C ν̃(i:2) (8)

∀` (b̃(i−1:2)
` , α̃

(i−1:2)
` , y`) ≡C (b̃(i:1)

` , α̃
(i:1)
` , y`) (9)

∀` (b̃(i:1)
` , α̃

(i:1)
` , y`) ≡C (b̃(i:2)

` , α̃
(i:2)
` , y`) (10)

Proving Equations (2) and (4): These follow from the fact that the Phase VsZKAOK remains statistically indis-
tinguishable when the alternate witness is used. However note that in the PRS simulation, indistinguishability does
not hold when multiple threads are considered together. But the only way a thread can affect subsequent threads is
through the availability of the PRS secrets at the right points in the simulation. Recall the refinement mentioned after
Lemma A.2: as the change introduced in each thread is undetectable, it will still hold that the PRS secrets will be
available as required except with negligible probability. Other than the availability of the PRS secret, each thread is in-
dependent of other threads. Thus each individual thread, and in particular the main thread, continues to be statistically
indistinguishable in the simulation bỹHi−1:2 andH̃i:1. This in turn implies both equations (2) and (4).

Proving Equations (3) and (5): Equation (3) follows from the hiding property ofComNM. To see this we create
a standalone machineM which is identical toH̃i:1, except that on reaching FMi it starts interacting with an external
senderP . First it sendswp(i) to P , and then receives a commitment fromP which it uses to interact withA, instead

of an honest commitment towp(i) asH̃i:1 does. However ifP makes an honest commitment towp(i) then the(M,P )
system is identical tõHi:1. However, ifP makes a commitment to the all-zeros string, then the(M,P ) system is
identical toH̃i:2. By the hiding property ofComNM the output ofM must be indistinguishable in the two cases,
establishing equation (3).

However to prove equation (5), this is not enough, because only the right hand side commitments appear in the
simulated view and not the committed values themselves (which can be distinguishable even when the commitments
themselves are indistinguishable). So now we build a machineM` which not only receives the left hand side commit-
ment fromP as before, but also exposes the right hand side commitment in the main thread toV`. Then we shall use
the non-malleability property ofComNM to argue that the values committed to byM` are indistinguishable in the two
experiments and hence so will be the values committed toV` by H̃i:1 andH̃i:2.

The precise argument is slightly more involved. Consider generating the pair of random variables(b̃(i:1)
` , α̃

(i:1)
` )

and(b̃(i:2)
` , α̃

(i:2)
` ) as follows: note that̃Hi:1 andH̃i:2 are described identically until FMi. Let us call this machinẽHi,

which we run until reaching FMi. At this point there are three possibilities:

1 Both (b̃(i:1)
` , α̃

(i:1)
` ) and(b̃(i:2)

` , α̃
(i:2)
` ) are defined – i.e. thè’th right-hand-side interaction already terminated

before we reached FMi. In this case they have identical values.

12as it would have already failed inH3
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2 Bothα̃
(i:1)
` andα̃

(i:2)
` are defined and they have the same value,α̃

(i)
` . b̃

(i:1)
` andb̃

(i:2)
` are not yet defined.

3 All of (b̃(i:1)
` , α̃

(i:1)
` ) and(b̃(i:2)

` , α̃
(i:2)
` ) are undefined.

In the latter two cases we continue the execution ofH̃i:1 and H̃i:2 separately to fully define the random variables.
It is sufficient to argue that the pairs of random variables obtained in these two sub-processes are indistinguishably
distributed.

In the second case this follows from the indistinguishability ofComNM. To see this consider a machineM` initial-
ized toH̃i, at the point of FMi. It starts off by sendingwp(i) to an external senderP and receives a commitment to
eitherwp(i) or to the all zeros string, and uses this commitment instead of the honest commitment; then it outputs a bit

indicating whetherV` accepted the simulated proof or not, along with the committed valueα̃
(i)
` , which is provided to

M` non-uniformily (as it was already fixed). Depending on the choice made byP , the output is either(b̃(i:1)
` , α̃

(i:1)
` ) or

(b̃(i:2)
` , α̃

(i:2)
` ). SinceM is a (non-uniform) PPT machine, the hiding property ofComNM implies that these two outputs

must be indistinguishable.
In the third case we consider two sub-cases, depending on whether FMi is in the main thread or not. If FMi is not in

the main thread, then the statistical difference in the main thread is negligible. This is because, as described in the proof
of equations (2) and (4), the only way previous threads affect the main thread is on account of whether all the requisite
PRS secrets are available on time during the simulation; but, again as pointed out above, the refinement of Lemma A.2
guarantees that the probability of the simulation getting stuck for want of a PRS secret will remain negligible in both
H̃i:1 andH̃i:2.

Dealing with the remaining sub-case, when FMi appears in the main thread, requires the non-malleability property
of ComNM. Note that at FMi the first message of the right handComNM phase withV` has not yet started. Then, like
before, we construct a machineM ′

`, again initialized toH̃i at the point of FMi, which starts off by sendingwp(i) to an
external senderP and receives a commitment to eitherwp(i) or to the all zeros string, and uses this commitment instead
of the honest commitment. HoweverM ′

` differs fromM` in the following ways:

• It does not run any look-ahead threads. (For instance, in Figure 1, fori = 1, M ′
` will not run any look-ahead

threads; fori = 6, M ′
` will run all the look-ahead threads except AE.) Note that at the point FMi, we have that

H̃i would have recorded the PRS secret for all the left hand side preambles which were already concluded and
could go on to be accepted. As for the preambles which are concluded after the point FMi, if their sessions go
on to reach Phase IVComNM, then they will be numbered FMj for j ≥ i. So for those sessions̃Hi:1 andH̃i:2 do
not require the PRS secret to execute the thread. So there is no need to run any further look-ahead threads.

• TheComNM commitment toV` is “exposed.” That is, the part ofV` which receives theComNM commitment is
not internalized; insteadM ′

` expects this to be an outside party.

• For convenience, we will haveM ′
` output a bit indicating whether in the internal simulationV` accepted the proof

or not.

WhenP chooses to commit to the string sent byM ′
`, the entire execution, with an honest external receiver for the

exposed commitment is a statistical simulation of the main thread execution ofH̃i:1, and whenP chooses to commit
to the all-zeros string it is a statistical simulation of the main thread execution ofH̃i:2. (The only reason for the the
simulations are not perfect is because inM ′

`, the negligible probability that the PRS simulation may fail beyond FMi

is no longer present, whereas it is present inH̃i:1 andH̃i:2.) Further, in the first case the output byM ′
` is b̃

(i:1)
` and in

the latter̃b(i:2)
` . Now, the non-malleability condition onComNM implies equation (5).

A.5.2 Relaxing the requirement onComNM

We remark that the (natural) requirement we used, that the first message inComNM be the determining message, can in
fact be removed. This will provide the flexibility of using a protocol based on alternate statistical binding commitment
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schemes (like Naor’s scheme [NAO89] in which the first message in the protocol is a random string from the receiver to
the sender, and it is the second message which is the determining message).

Not having the first message as the determining messageg affects our proof at exactly one point:13 at the very last
case analysis in the proof of Claim A.6, in constructing the adversaryM ′

` we assumed that it can be initialized to the
point at which FMi occurs in the main thread of̃Hi, and only subsequently does it start interacting with the external
receiver, in the exposed session (i.e.,ComNM session withV`). However, if the first message ofComNM is not the
determining message, the case analyzed should include the possibility that the commitment to be exposed has already
started before FMi occurs, but has not reached its determining message yet. Then we modifyM ′

` to be initialized to
the point where either theComNM session withV` starts or where FMi occurs in the main thread, whichever occurs
first. If the former occurs first,M ′

` needs to carry out the execution of the look-ahead threadsuntil it reaches FMi.
However since it cannot rewind the external receiver, in the look-ahead threads it must internally simulate the receiver.
This is similar to the situation faced in creating the standalone adversary for extraction in the final stage of building
S. Indeed, the condition we used there, namely that the receiver has no private coin until the knowledge-determining
message, implies that the receiver has no private coins until the point where the simulation reaches FMi (because it
occurs before the determining message, which in turn occurs before the KDM). HenceM ′

` can carry out the simulation
of the look-ahead threads internally until it reaches FMi.

B Details: Impossibility result for concurrent non-malleable general functionalities.

In this section we show that it isimpossibleto extend the result we achieved for zero knowledge for general functionali-
ties. Specifically, we’ll show that there is some polynomial-time functionF , such that for every protocol implementing
F , there’s a concurrent attack that can be carried in the real model and cannot be carried in the ideal mode, even in the
case where all honest parties’ inputs are chosen according to some (correlated) distribution and fixed in advance.

The functionF . We repeat here more formally the definition of the functionF . The functionF will be a combination
of

(
2
1

)
string oblivious transfer and zero knowledge for a particular language. This is a two-party functionality where

only one party (which we call thereceiver) gets any output. Formally, it is defined as follows:
The functionality will be parameterized with a security parametern. Let f : {0, 1}n → {0, 1}n be a one-way

function, define

FZK(w ◦ x, x) =

{
1 x = f(w)
0 otherwise

Forx,w ∈ {0, 1}n, and where◦ denotes concatenation. That isFZK is the ideal zero knowledge functionality for the
NP-relationRf = {(x,w) : x = f(w)}.

We defineFOT as follows
FOT (x0 ◦ x1, b) = xb

Forx0, x1 ∈ {0, 1}n andb ∈ {0, 1}. That is,FOT is the functionality for
(
2
1

)
string oblivious transfer, where the sender

has two strings as inputsx0, x1 ∈ {0, 1}n, the receiver one bitb ∈ {0, 1}, the receiver learnsxb but notx1−b and the
sender learns nothing aboutb.

We defineF to be the function that allows to compute bothFZK andFOT . Formally, it is defined as follows:

F(i ◦ x ◦ w ◦ x0 ◦ x1, i
′ ◦ x ◦ b) =


FZK(x ◦ w, x) i = i′ = 0
FOT (x0 ◦ x1, b) i = i′ = 1
⊥ otherwise(i 6= i′)

(where⊥ is a value denoting failure).

13There is also a notational difference: we definedp(i) to be the index of the proversendingFMi. Now, depending on whether FMi is from
the committing party or from the receiver,p(i) will be the index of the prover sendingor receiving FMi, respectively.
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Let Π be a two-party protocol, where we call one party the sender and the other the receiver. We say thatΠ
computesF if when both parties follow the protocol’s instructions with inputss andr respectively, the receiver outputs
F(s, r). (To simplify notations, we assume that the valuen is used as the security parameter of both the protocolΠ
and the functionality.) We prove the following theorem:

Theorem B.1. [Theorem 3.1, restated]Assume thatf is a one-way functionf and letF be defined as above. LetΠ be
any polynomial-time two party protocol computingF . Then, there’s a polynomialt(·) such that for anyn there exists
distributionD on2t = t(n) inputs forΠ, a concurrent schedulingS of t executions ofΠ, a polynomial-time adversary
A, and a polynomial functionSECRETthat maps the inputs into{0, 1}n.

• In a concurrent execution oft copies ofΠ according to the scheduleS with the honest parties and the corrupted
parties receiving inputs chosen from the distributionD, the adversaryA outputs the value ofSECRETon the
inputs with probability1.

• In an ideal model, for any polynomial-time adversaryÂ that gets access tot copies of the ideal OT functionality,
with the honest parties’ inputs in these copies coming fromD, (and Â receiving the inputs corresponding to
the corrupted parties) the probability that̂A outputs the value ofSECRETon the inputs is negligible, where this
probability is taken overD and the coins of̂A.

As mentioned in Section 3, the proof proceeds in two steps:

1 First prove that for every protocolΠZK for the zero knowledge functionality (for the relationRf above), there
exists an ideal two-party deterministic functionFΠ (that depends on the protocolΠZK) such that a single instance
of ΠZK executed concurrently with several ideal calls to copies ofFΠ will not be secure. (In the same sense as
Theorem B.1, that for inputs chosen from some distribution and fixed in advance, an adversary can learn a secret
that she cannot learn ifΠZK was replaced with the ideal zero knowledge functionality.)

2 Secondly, take this scenario of the protocolΠZK and functionalityFΠ and compile this into a scenario where
the only thing executed in the network is one copy of a zero knowledge protocol and many copies of an OT
protocol, with the honest parties’ inputs for these copies chosen from a set of predefined distributions. We then
argue that the previous real-world attack remains viable in this scenario and (more subtly) that it is still infeasible
to perform this attack if all these copies were replaced by ideal calls to the OT/ZK functionalities. SinceF is a
combination of these functionalities, the result follows.

B.1 Proof of Theorem B.1: First stage.

We now prove the following lemma (this is the formalization of Item 1 from above):

Lemma B.2. Suppose thatf is a one-way function and letRf be theNP-relation {(x,w) : x = f(w)}. LetΠ be a
stand-alone zero-knowledge proof of knowledge for the relationRf with k = k(n) prover messages (wheren denotes
both the security parameter and the length|x| of the statement being proven). Then, there exists a polynomial-time
functionF = FΠ : {0, 1}∗×{0, 1}∗ → {0, 1}∗, a distributionD on({0, 1}∗)k+1, a functionSECRET: ({0, 1}∗)k+1 →
{0, 1}n and a polynomial-time adversaryA such that:

• In a concurrent execution scheduled byA of one copy ofΠ, with A as verifier, andk ideals calls toF with A
providing the second input and receiving the output, if the inputs to the honest parties ared chosen fromD, then
A learnsSECRET(d) with probability one.

• In any execution ofk copies of the ideal calls toF and a copy of the ideal ZKPOK functionality, with honest
inputsd chosen fromD, a polynomial time adversarŷA will only outputSECRET(d) with negligible probability.
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Proof. (Sketch) Before proving the lemma, let us recall why there do not exist (in the plain model) protocols for zero-
knowledgeΠ that are secure against achosen protocol attack. Let Π be a standalone zero knowledge protocol. Think
of the following scenario involving four parties Alice,Bob,Charlie, and David: there’s a public valuex and both Alice
and David share a secret valuew such thatx = f(w). We consider two simultaneous executions: in one execution
Alice will prove to Bob that she knows such a valuew using the ZKPOK protocolΠ. In the second execution Charlie
and David will run the protocolΠ′ defined as follows: At first Charlie will prove to David that he knows such a value
w using the protocolΠ.14 Then, if this succeeds, David will sendw to Charlie.

It’s clear that if Bob and Charlie are coordinating a malicious attack, then they can learn the valuew. However, if
the execution ofΠ was replaced with an ideal call to the ZKPOK functionality, then the adversary would not be able
to use that call to run a successful internal execution ofΠ, and so will not learn the valuew. This is basically the proof
that there’s no zero knowledge protocolΠ that is secure under general composition/chosen protocol attack.

We now want to convertΠ′ from a protocol intok ideal calls to a functionalityF which uses inputs that are chosen
from some distribution and fixed in advance. The natural thing is to simply use forF the next message functionof
David’s strategy in the protocolΠ′. That is, the inputs will bew, a stringr that is chosen at random, and on input a
transcriptt = 〈d1, c1, d2, c2, . . . , di, ci〉 of Charlie and David’s messages in the firsti rounds ofΠ′, the functionF will
output David’si+1th message in this protocol given that his input isw, his random coins arer, and the transcript until
that point wast. If we use thisF then certainly in a coordinated attack, Bob and Charlie can emulate the attack above
and learn the valuew. However, it’s not at all clear that this is not possible in the ideal world as well— indeed ifΠ
is a black-box zero knowledge proof, given the ability to query the next-message function of David one can certainly
obtain an accepting transcript where David is the verifier.

To make the attack infeasible in the ideal model as well, we add to the inputs a keys for a message authentication
(MAC) scheme. Now, given such a transcriptt = 〈d1, c1, d2, c2, . . . , di, ci〉, the functionF will request also a valid
tag/signature (with respect to the keys) on the prefix〈d1, c1, d2, c2, . . . , di〉, and will output not onlydi+1 but also
a tag on〈d1, c1, d2, c2, . . . , di, ci, di+1〉. It’s not hard to see that now, given onlyk queries toF , it’s infeasible for a
polynomial-time adversary to obtainw without essentially interacting withΠ′ in a straightline manner (i.e., submitting
k queries of increasing and consistent transcripts). Thus, in this ideal world, the soundness/proof of knowledge property
of Π implies that the probability that an adversary outputsw is negligible.

B.2 Proof of Theorem B.1: Second stage.

We’ll now finish the the proof of Theorem B.1. As mentioned above, the idea would be to “compile” the scenario of
the first stage into a scenario where the only protocol executed is the oblivious transfer protocol. We do this using a
modification of Yao’s “garbled circuit” method following the intuition given above. We note that we’ll not be using
Lemma B.2 as a black-box but rather will follow the proof of this lemma to prove the theorem.

Yao’s garbled circuit technique. We now sketch Yao’s method. As this method is well known we focus on our
notations and particular conventions. See [LP04] (whose notations we follow) for a full description of the method and
its analysis. We’ll have two parties, asenderand areceiver. Let n be a security parameter (we’ll use

(
2
1

)
string OT

for strings of length2n). The sender holds a circuitC (where|C| is of some polynomial size, and this size and the
topological structure of the circuit are not secret), and the receiver holds an inputx. The goal is for the receiver to learn
C(x) but nothing else about the circuitC. For every wirew in the circuit and bitσ ∈ {0, 1} we define a valuekσ

w

which is chosen uniformly at random from{0, 1}n. The garbled circuit consists of tables that allow you for any gateg

(whereg : {0, 1} × {0, 1} → {0, 1}) that takes input wiresw1, w2 and has one output wirew3, to computekg(σ1,σ2)
w3

from kσ1
w1

andkσ2
w2

. The table is obtained by taking a private-key CPA-secure encryption scheme, and having for each

gateg a table with four rows: for everyσ1, σ2 ∈ {0, 1} we place the encryption ofkg(σ1,σ2)
w3 ◦ 0n with the keykσ1

w1
and

14If the protocolΠ refers to the identities of the parties, we define that when executing this internal copy ofΠ, Charlie will use the identity
“Alice” and David will use the identity “Bob”. Note that we’re free to defineΠ′ to depend onΠ in an arbitrary way.
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then with the keykσ2
w2

(where◦ denotes concatenation).15

Typically, for every output wirew of the circuit, one also supplies a way to computeσ from kσ
w. That is, for the

tables corresponding to output gates, the valueσ (appropriately padded) is encrypted instead of the valuekσ
w. However,

we’ll do something slightly different: we’ll XOR the output with some secret stringz ∈ {0, 1}m (wherem denotes
the number of outputs). That is, we’ll encrypt in these tables the valueσ ⊕ zw, wherew is the label of that output
wire. We’ll choose the stringz to beG(s) whereG : {0, 1}n → {0, 1}m is a pseudorandom generator ands is chosen
uniformly at random from{0, 1}n.

The Yao protocol. The protocol is typically as follows: the sender sends the garbled circuit over to the receiver, but
keeps to itself the keys corresponding to each of the input wires. Then, by performingm′ executions of string

(
2
1

)
OT

(wherem′ is the number of input wires), for each input wirew the receiver chooses to get eitherk0
w or k1

w, according
to the value in thewth position of its inputx. We will make the following changes:

1 Instead of sending the garbled circuit to the receiver, we will assume that the garbled circuit is an input that is
given to the receiver. We note that we will always have the receiver as a corrupted party. Thus, we think of the
scenario where there inputs are chosen from a distribution (that is not a product distribution), and these inputs are
given to both the honest parties and corrupted parties. This distribution will provide the honest parties with the
keys for the input wires, and the corrupted parties with the corresponding garbled circuit. Note that this means
that there’s no issue of trust that the circuit is indeed garbled correctly.

2 We’ll selects1, . . . , sm′ uniformly at random from{0, 1}n subject to the conditions1⊕s2⊕· · ·⊕sm′ = s (recall
that the “mask” to the outputs isz = G(s)). In the OT, for every input wirew, the sender will use as the two
input stringsk0

w ◦ sw andk1
w ◦ sw. The idea is that before concludingall the copies of the OT corresponding to

this circuit, the receiver will not get any information about the output. On the other hand, we note that by [YAO86]
(see [LP04] for details), once a corrupted party finishes all OT’s needed to obtain input strings corresponding to
its chosen inputa, it will learn only the output ofC(x), and nothing more.

Note that this means that the only interaction between the sender and receiver is performing them′ copies of the
OT.

Our compiler. Let Π be a protocol that implementsF . We can derive fromΠ protocolsΠZK andΠOT for zero-
knowledge (for the relationRf ) and oblivious transfer, respectively, by simply having the sender and receiver choose
the appropriate value ofi. FromΠZK , let F = FΠZK

be the function obtained from the proof of Lemma B.2. Ifk
is the number of prover messages forΠZK , andm is the length of the input toF , we now compile thek copies of
F from the proof of Lemma B.2 following the procedure above intokm copies of the OT functionality (which is a
subfunctionality ofF) with inputs as above. Consider an execution of one copy ofΠZK (with inputsx = f(w) for
w chosen at random) concurrently with thesekm copies ofΠOT (or equivalently, execution ofkm + 1 copies ofΠ)
where the adversary corrupts the receiver in all cases (i.e., the verifier in the zero-knowledge, and the receiver in the
OT). We make the following claims:

• In the real world, the adversary can learnw with probability one.

This follows by combining the adversary strategy given in the proof of Lemma B.2 – in which the adversary
needs access tok evaluations of theF functionality to learnw – with the Yao protocol – which exactly allows
the adversary to evaluate theF functionality. Thus, this scenario allows the adversary to obtain the valuew with
probability one.

15The reason for padding with zeros is to make sure that when trying to decrypt with the two keys all rows in the table, the receiver will know
when it found the right row.
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• In the ideal world, the adversary can learnw only with negligible probability.

In the ideal world the adversary basically gets one call to the ZK functionalityFZK andkm calls to the OT
functionalityFOT (with honest parties’ inputs chosen as described above) – note that since both parties must
agree on how to useF , if the adversary tries to useFZK more than once, orFOT km + 1 times, then this will
result in the adversary getting the output⊥. The adversary gains no information (in an information-theoretic
sense) aboutw from its one interaction withFZK . However, it’s more tricky to show that it won’t learn anything
from the OT calls.

The adversary has access tokm copies ofFOT , and we divide these copies to setsS1, . . . , Sk, where|Si| = m
for all i, and contains all copies ofFOT corresponding to a single garbled circuit. From the proof of security
of Yao’s protocol (see [LP04] for details), we can show that the adversary gets no information (in a complexity-
theoretic sense) about the circuit except for its value on the outputs corresponding to the adversaries choice as a
receiver in the OT executions. Furthermore, because of the secret-shared “mask” we use, before the adversary
queriesall the copies ofSi she gets no information about the output of theith circuit. Assume the setsS1, . . . , Sk

are ordered according to the timing of the query to the last copy of the OT in each setSi. We can simulate the
adversary by an adversary in the model where all the invocations in the setSi are replaced with one invocation
to the functionalityF (the simulator will provide random answers until the last query). However, this is exactly
the model of Lemma B.2 and so, as in that case, the adversary will only learnw with negligible probability.
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