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Abstract

We consider the question of whether P 6= NP implies that there exists some concept class that is
efficiently representable but is still hard to learn in the PAC model of Valiant (CACM ’84), where the
learner is allowed to output any efficient hypothesis approximating the concept, including an “improper”
hypothesis that is not itself in the concept class. We show that unless the Polynomial Hierarchy collapses,
such a statement cannot be proven via a large class of reductions including Karp reductions, truth-table
reductions, and a restricted form of non-adaptive Turing reductions. Also, a proof that uses a Turing
reduction of constant levels of adaptivity would imply an important consequence in cryptography as it
yields a transformation from any average-case hard problem in NP to a one-way function. Our results
hold even in the stronger model of agnostic learning.

These results are obtained by showing that lower bounds for improper learning are intimately related
to the complexity of zero-knowledge arguments and to the existence of weak cryptographic primitives.
In particular, we prove that if a language L reduces to the task of improper learning of circuits, then,
depending on the type of the reduction in use, either (1) L has a statistical zero-knowledge argument
system, or (2) the worst-case hardness of L implies the existence of a weak variant of one-way functions
defined by Ostrovsky-Wigderson (ISTCS ’93). Interestingly, we observe that the converse implication
also holds. Namely, if (1) or (2) hold then the intractability of L implies that improper learning is hard.

1. Introduction

Computational learning theory captures the intuitive notion of learning from examples in a computa-
tional framework. In particular, Valiant’s PAC (Probably Approximately Correct) learning model [40]
considers the following setting: a learner attempts to approximate an unknown target function f :
{0, 1}n → {0, 1} taken from a predefined class of functions C (e.g. the class of small DNFs). He gets ac-
cess to an oracle that outputs labeled examples (x, y) where x is drawn from some unknown distribution
X over the domain of f and y = f(x). At the end, the learner outputs an hypothesis h which is supposed
to approximate the target function f , in the sense that, say, PrX [h(x) 6= f(x)] < ε for some small ε > 0.
The class C is efficiently PAC-learnable if there is a polynomial-time learner that succeeds in this task
with high probability for every f ∈ C and every distribution X on the inputs (see Section 2 for a formal
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definition). For most applications it is not important how the output hypothesis h is represented as long
as h is efficiently computable and it predicts the value of the target function f correctly on most inputs.
Indeed the general definition of PAC learning allows h to be represented as an arbitrary polynomial-size
circuit even if the target function is chosen from a more restricted class. A proper learner is a learning
algorithm that only outputs hypothesis in the class C; thus the task of general PAC learning is sometimes
known as “improper” learning.

Computational learning theory has provided many strong algorithmic tools and showed that non-trivial
concept classes are efficiently learnable. But despite these successes it seems that some (even simple)
concept classes are hard to learn. It is considered all the more unlikely that every efficiently computable
function can be learned efficiently. We refer to this belief as the “Learning is Hard” (LIH) assumption:

Assumption 1. (Learning is Hard (LIH)) The concept class of polynomial-size Boolean circuits
cannot be learned efficiently in the PAC model.

The LIH assumption is easily shown to be stronger than the conjecture that P 6= NP, but it is still
widely believed to be true. In fact, LIH is implied by cryptographic assumptions, namely the existence
of one-way functions [16, 24, 37]. But such cryptographic assumptions seem qualitatively stronger than
the assumption that P 6= NP. The main question we are concerned with in this paper is whether one
can prove that if P 6= NP then the LIH assumption is true.

Basing LIH on NP-hardness. Some previous works suggest that there is some hope to derive hard-
ness of learning from P 6= NP. Proper learning (where the hypothesis h has to be in the class C) is
known to be NP-hard in general [36].1 Such hardness results hold for several concept classes and for
other variants and extensions of the PAC learning model (cf. [36, 7, 23, 4, 3, 12, 13, 22, 21]). One may
hope to use these results as a starting point for proving NP-hardness in the general (i.e. improper)
setting. Indeed, although some of the aforementioned lower bounds seem useless for this purpose (as
they apply to concept classes which are known to be improperly learnable), others might still be relevant
in our context. In particular, [3] show that it is NP-hard to learn the intersection of two halfspaces even
in a semi-proper setting where the learner is allowed to use an intersection of any (constant) number of
halfspaces. Similarly, [21] show that learning parity in the agnostic model, where the data is noisy, is
NP-hard even if the learner is allowed to use a low degree polynomial. These concept classes are not
known to be efficiently learnable. Also, both works rely on highly non-trivial PCP machinery. This may
give some hope that similar techniques will eventually prove that (improper) learning is NP-hard.

1.1. Our Results

As indicated above, it is not known whether NP 6= P implies the LIH assumption. We show that
a wide range of known techniques are unlikely to prove this statement.2 Specifically, our main result
shows that if learning circuits is proved to be NP-hard via a large family of reductions (including Karp
reductions, truth-table reductions, or Turing reductions of bounded adaptivity) then, depending on the
type of the reduction, either the Polynomial-Hierarchy (PH) collapses or any average-case hard problem
in NP can be converted into a one-way function (in terms of [25], Pessiland collapses to Minicrypt).
The first consequence is considered to be implausible, while the latter would be a major breakthrough
in cryptography.

1A different restriction on the power of the learner is studied in the Statistical Query model [28]. In this model the
learner has a limited access to the examples, and hardness of learning can be proven unconditionally without relying on
computational assumptions [5].

2Clearly we cannot hope to unconditionally rule out the implication “P 6= NP ⇒ LIH”, as it trivially holds under the
assumption that one-way functions exist.
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These results are obtained by showing that lower bounds for improper learning are intimately related
to the complexity of zero-knowledge and to the existence of weak cryptographic primitives. In particular,
we prove that if deciding a language L reduces to the task of learning circuits, then, depending on the
type of the reduction in use, either (1) L has a statistical zero-knowledge argument system, or (2) the
worst-case hardness of L implies the existence of auxiliary-input one-way functions [35], which are a
weak variant of one-way functions. This holds even in the stronger model of agnostic learning. While
the aforementioned implications are too weak to be useful for cryptographic applications, we can still
show that when L is NP-complete they lead to unlikely consequences such as the collapse of PH or
Pessiland=Minicrypt. This is proved by relying on the works of [9, 14, 35, 2].

Interestingly, we observe that the converse implication is also true. Namely, if (1) or (2) hold then the
intractability of L implies that improper learning is hard in a relatively strong sense (i.e. even when the
examples are drawn from the uniform distribution and the learner is allowed to query the target function
on any given point). This is proved by a simple combination of [16, 24, 35]. Overall, we get some form of
“necessary and sufficient” condition for proving LIH via reductions. We use it to conclude that proving
a weak version of LIH (via standard techniques) is not easier than proving a strong version of LIH.

Constructing one-way functions from LIH. A different approach would be to show that LIH is
sufficient for cryptography. That is, the LIH assumption is equivalent to the assumption that one-way
functions exist. From a first look, the probabilistic aspect of the PAC model may give some hope that
a hard to learn problem can be used for cryptographic applications. The works of [26, 6] show that this
is indeed the case when an average-case version of the PAC model is considered. But there appear to
be significant obstacles to extending this result to the case of standard PAC learning. In particular, LIH
only guarantees that every learner fails to learn some function family over some distribution ensemble –
a single hard-to-learn function and distribution might not exist. A more serious problem is that because
the PAC model ignores the complexity of the target distribution, LIH might hold only with respect
to distributions which are not efficiently samplable; such distributions seem useless for cryptography.
More concretely, we observe that LIH can be based on the non-triviality of zero-knowledge proofs (i.e.
ZK * BPP), and consequently, on the worst-case hardness of QuadraticResidue,GraphIsomorphism and
DiscreteLog [20, 18, 17]. Hence, proving that LIH suffices for the existence of one-way functions, would
show that one-way functions can be based on ZK * BPP. Again, such a result would have a major
impact on cryptography.

Related work. As mentioned above, several works gave NP-hardness results for proper and semi-
proper learning, but known hardness results for general (improper) learning are only based on crypto-
graphic assumptions. In particular, Pitt and Warmuth [37] observed that LIH is implied by one-way
functions by combining [16, 24], while hardness of learning specific concepts under specific cryptographic
assumptions was shown in several other works including [29, 31].

The question of whether worst-case assumptions such as P 6= NP are sufficient for learning lower-
bounds was first raised by Akavia, Goldwasser, Malkin and Wan (personal communication, Winter
2006), who showed results of similar flavor to this work— namely that under widely believed complexity
assumptions, certain types of black-box reductions will not be able to show statements of the form
“P 6= NP implies hardness of learning”. However, the notion of hardness of learning they studied was
either hardness of average-case learning (that as mentioned above is known to imply the existence of
one-way functions [26, 6]), or hardness of worst-case learning of specific concept classes (in particular not
including those concept classes that are known to be NP-hard to learn properly). In contrast, the LIH
Assumption we study talks about worst-case learning of any efficiently representable concept class.
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1.2. Proving LIH via Reductions

We proceed with a detailed account of our main result. We consider the existence of reductions that
prove that NP 6= P implies LIH by solving an NP-hard language L such as SAT using the power of a
PAC learning algorithm for the concept class of Boolean circuits. More formally, a circuit learner takes
as an input an accuracy parameter ε, and oracle access to a joint distribution (X, Y ) where X is the
target distribution over {0, 1}n and Y = f(X). The learner outputs an hypothesis h, represented by a
circuit, which ε-approximates f with respect to X (i.e. Pr[h(X) 6= Y ] ≤ ε(n)). The complexity of the
learner is polynomial in 1/ε and in the circuit size of f .3 We consider several possible ways (reductions)
in which one can use a circuit learner to decide a language L.

Karp reductions. Perhaps the most natural way to reduce a language L to a circuit learner is to
give a Karp reduction mapping an instance z of L into a circuit sampling a distribution (X, Y ) over
{0, 1}n × {0, 1} such that Y is equal to f(X) for some f computable by a polynomial-sized Boolean
circuit if and only if x ∈ L (see Section 3 for a formal definition). In fact, to the best of our knowledge,
all the previous NP-hardness results for learning (i.e., in the proper and semi-proper cases) were proved
via such reductions. Our first result rules out such a reduction:

Theorem 1. For every language L, if L reduces to circuit learning via a Karp reduction then L has a
statistical zero knowledge argument system. Moreover, if L is NP-complete and such a reduction exists
then the polynomial hierarchy collapses to the second level.4

The second part of the theorem generalizes to the case of (randomized) truth-table reductions [32]
(which are equivalent to non-adaptive Turing reductions).

Turing reductions. Karp reductions use the learning algorithm in a very limited way, namely, as
a distinguisher between learnable instances and non-learnable instances. This motivates the study of
reductions that exploit the hypothesis generated by the learner in a stronger way. Formally, we can
think of a circuit learner as an algorithm which solves the Circuit Learning search problem, and consider
Turing reductions from L to this problem. Such reductions interact with the learner by supplying it
with distributions of labeled examples, and obtaining from the learner hypotheses predicting the labels
under the distributions (if such predictors exist). We allow the reduction to use the hypotheses returned
by the learner arbitrarily. That is, the reduction can apply any (efficient) computation to the circuits
that describe the hypotheses in order to solve the underlying language L. Unfortunately, we are not able
to rule out fully adaptive Turing reductions, and so will only consider reductions of bounded adaptivity
where the interaction between the reduction and the learner proceeds in a constant number of adaptive
rounds. (See Section 4 for the formal definition.) Our main result for such reductions is the following:

Theorem 2. If L reduces to circuit learning via a Turing reduction of bounded adaptivity, then there
is an auxiliary input one-way function [35] based on the hardness of L. Moreover, if such a reduction
exists and L is hard on the average then there exists a (standard) one-way function.

3The real definition of PAC learning allows the learner to err with some probability according to a given confidence
parameter. For simplicity we do not allow such an error, which only makes our results stronger. Also, by a simple padding
argument we may assume in our context without loss of generality that f has a circuit of size, say, n2.

4The “moreover” part does not follow immediately since the existence of a statistical zero-knowledge argument system
for an NP-complete problem does not collapse the Polynomial Hierarchy by itself— in fact, assuming that OWFs exists,
SAT has such a zero-knowledge protocol [33]. We collapse PH by relying on the special structure of reductions to circuit
learning.
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Note that Theorem 2 means that a reduction of an NP-complete problem to circuit learning shows that
if there is an hard-on-average problem in NP then one-way functions exist. In Impagliazzo’s terms [25]
this means that such a reduction would collapse the worlds “Pessiland” and “Minicrypt”. We also show
that if L reduces to Circuit-Learning via a special family of reductions (i.e. Turing reductions in which
the queries are generated non-adaptively and the hypotheses are used in a non-adaptive and black-box
way) then L ∈ CoAM. When L is NP-complete this collapses the Polynomial-Hierarchy.

Extension to the Agnostic Setting. In the agnostic learning model of [30] the learner still gets a
joint distribution (X, Y ) but the distribution of the labels Y is arbitrary and does not necessarily fit to
any target function f in the concept class. The learner is guaranteed to output an hypothesis h whose
error with respect to (X, Y ) (i.e. Pr[h(X) 6= Y ]) is at most ε larger than the error of the best function
f in the concept class C. Learning in the agnostic model seems much harder, and there are examples
of concept classes (e.g. parity) that are PAC learnable but not known to be learnable in the agnostic
model. Thus one may hope that it would be easier to prove NP-hardness results in this model. (Indeed
as mentioned above [21] prove a semi-proper NP-hardness result for agnostic learning of parity.) Alas, all
our results extend (with some work) to the agnostic model as well, thus ruling out proving such hardness
results via a large class of reductions.

1.3. Our Techniques

To illustrate some of our techniques we consider the simple case of a deterministic Turing reduction
that decides SAT by making a single query to the Circuit-Learner. Such a reduction is described by a
pair of probabilistic polynomial-time algorithms (T, M) and an accuracy parameter ε. On input a 3CNF
formula represented by a string z, the algorithm T (z) outputs a query to the learner (Xz, Yz), while
the algorithm M uses z and (the code of) an hypothesis h, returned by the learner, to decide whether
z ∈ SAT. We say the query (Xz, Yz) is “honest” if there exists some fz in the concept class of polynomial-
sized Boolean circuits such that Pr[Yz = f(Xz)] = 1. If the query is honest then the reduction expects
the hypothesis h to be ε-good (i.e. Pr[Yz 6= h(Xz)] < ε).5

We would like to show that this reduction leads to some implausible consequence such as collapsing the
polynomial hierarchy or constructing a one-way function based on the hardness of SAT. Let’s focus on the
latter case. We assume that such a reduction exists but one-way functions do not exist, and we’ll use that
to show a polynomial-time algorithm for SAT. (Thus if such a reduction exists then P 6= NP ⇒ ∃ OWF.)

A problematic approach. To use the reduction to solve SAT, it suffices to show that given an honest
query (Xz, Yz) we can find an ε-good hypothesis h for (Xz, Yz). At first glance this seems easy under
our assumption that one-way functions do not exist. After all, if the query is honest then there exists
some efficiently computable function fz such that Yz = fz(Xz), and fz has no “cryptographic strength”.
In particular this means that the collection of functions {fz} is not pseudorandom and can be predicted
by a polynomial-time adversary. Indeed, this approach was used in [6] where an average-case version of
LIH is considered. However, in our setting this solution suffers from two problems. First, to obtain a
worst-case algorithm for SAT we should be able to predict fz for every string z and not just a random z.
The second and main problem is that the mapping (x, z) 7→ fz(x) might not be efficiently computable,
and therefore the collection {fz} can be pseudorandom without contradicting our assumption. Indeed,
the only efficiency guarantee we have is that fz has a small circuit for every fixed z. One may try to argue
that the query generator T can be used to compute this mapping but T only computes the mapping

5We do not assume in our proofs that the reduction queries are always honest. However, the learner is not required to
return any meaningful answer for non-honest queries.
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z → (Xz, Yz) and does not provide a circuit for fz or even a guarantee that such a small circuit exists.
In fact, if T could compute fz, it could feed it directly to M and solve SAT without using the learner.6

Solving the main problem. Assume for now that the query is honest (i.e., Yz = fz(Xz)). Instead
of learning the target function fz we will “learn” the distribution (Xz, Yz). That is, given x and z we
will try to find an element y in the support of the marginal distribution Yz|Xz = x. Note that if the
query is honest then indeed y = fz(x). To find y we will use our ability to invert the circuit Cz that
samples the joint distribution (Xz, Yz). Specifically, we “break” the circuit Cz into two parts: C

(1)
z , C

(2)
z

such that (C(1)
z (r), C(2)

z (r)) ≡ (Xz, Yz) for a randomly chosen r. In order to classify an example x, our
hypothesis h uses an inverter for C

(1)
z to find an r such that C

(1)
z (r) = x and then computes the value of

y = C
(2)
z (r). Clearly, whenever the inversion succeeds the hypothesis h classifies x correctly. Assuming

that C
(1)
z is not even a weak one-way function (as otherwise one-way functions exist [41]) we can invert

C(1)(r) with probability 1− ε (for arbitrary polynomially small ε > 0) when r is chosen randomly. Since
our hypothesis is tested exactly over this distribution (i.e. , over Xz ≡ C

(1)
z (r)), by using an ε-inverter

we can get an ε-good hypothesis h. To deal with the case of dishonest query we estimate the accuracy
of our hypothesis (by testing it on (Xz, Yz)) and output ⊥ if it is not ε-good.

It is important to note that although this approach leads to an ε-good hypothesis, it does not mean
that we PAC-learned fz. Indeed, the complexity of our hypothesis depends on the complexity of the
target distribution (as well as on the complexity of the inverter), while a true PAC-learner outputs an
hypothesis whose complexity is independent of the target distribution. However, since the learner is
assumed to be improper (i.e. it can output an hypothesis whose complexity is polynomially-related
to the complexity of fz), the reduction will “miss” this difference and will act properly as long as the
hypothesis hz is ε-close to fz.

Obtaining strong consequences. Our approach still suffers from the first problem— the non-existence
of one-way functions will only imply that we can invert C

(1)
z on a random z rather than for every z.

But in particular this implies that if one-way functions do not exist then SAT can be solved on the av-
erage! This collapses the worlds “Minicrypt” and “Pessiland” of Impagliazzo [25] and would be a major
breakthrough in complexity. Moreover in some special (yet interesting cases) we can use properties of
the reduction and apply the results of [2] to this setting and show that SAT ∈ CoAM, which collapses
the Polynomial Hierarchy to the second level.

Additional tools. The extension to the agnostic-case and to the case of Turing reductions of bounded
adaptivity requires additional tools and ideas. One important ingredient is the notion of distributionally
one-way functions [27] and its equivalence to standard one-way functions. We also employ cryptographic
reductions from [41, 16, 24]. Our use of “prediction via inversion” is similar to the notion of Universal
Extrapolation of [26]. As we already mentioned we also use results from [35] and [2]. For our results
on Karp reductions (which were not discussed on this subsection) we crucially rely on characterization
theorems for statistical zero-knowledge arguments [34] and statistical zero-knowledge proofs [19].

6Both problems were bypassed in [6] by assuming an average-case version of LIH. This assumption guarantees the
existence of efficiently samplable distributions, F over target functions and X over examples, which are universally hard for
all learners.
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1.4. Organization

Some preliminary definitions are in Section 2. Our results for Karp reductions are in Section 3. The
results for Turing reductions are in Section 4. The observation that auxiliary input one-way functions
imply the LIH assumption appears in Section 5.

2. Preliminaries

Notation. We use Un to denote a random variable uniformly distributed over {0, 1}n. If X is a
probability distribution, or a random variable, we write x

R← X to indicate that x is a sample taken from
X. The statistical distance between discrete probability distributions X and Y , denoted ∆(X,Y ), is
defined as the maximum, over all functions A, of the distinguishing advantage |Pr[A(X) = 1]−Pr[A(Y ) =
1]|. Equivalently, the statistical distance between X and Y may be defined as 1

2

∑
z |Pr[X = z]−Pr[Y =

z]|. We use some basic facts on the statistical distance mentioned in Appendix A.1.

Learning models. A learning algorithm gets access to an example oracle which samples from a dis-
tribution (X, Y ) over {0, 1}n×{0, 1} and tries to output an ε-good hypothesis, which is a function h such
that Pr[h(X) 6= Y ] < ε. In PAC learning [40] the example oracle is guaranteed to satisfy Y = f(X)
where f is a function from some concept class C. Throughout this paper we fix C to be the concept class
of Boolean circuits of size nc for some absolute constant c (e.g. c = 2). In our context this is the most
general choice and the one that makes our results the strongest. The PAC learner is efficient if it runs in
time poly(n, 1/ε, 1/δ) where δ upper bounds the probability that the learner fails to output an ε-good
hypothesis. In agnostic learning [30] there is no guarantee on the example oracle, and the learner simply
needs to output an hypothesis h such that Pr[h(X) 6= Y ] < minf∈C [f(X) = Y ] + ε. Since it’s harder to
learn in the agnostic model, allowing this model makes our results stronger.

2.1 Auxiliary input primitives

Ostrovsky and Wigderson [35] defined the notion of auxiliary input cryptographic primitives which is
a significantly weakened variant of standard cryptographic primitives. An auxiliary input (AI) function
is an efficiently computable function f(·) that in addition to its input x ∈ {0, 1}∗ gets an additional
input z. The security condition of an AI primitive is relaxed to requiring that for every potential efficient
adversary A, there exists an infinite set ZA ⊆ {0, 1}∗ (depending on A) such that A fails to “break” the
function whenever the auxiliary input comes from ZA. (The fact that Z depends on A is the reason why
auxiliary input primitives are generally not sufficient for most cryptographic applications.) We move to
a formal definition of auxiliary input primitives.

Definition 2.1. (Auxiliary-input functions) An auxiliary-input function is a family F = {fz :
{0, 1}`(|z|) → {0, 1}m(|z|)}z∈{0,1}∗, where `(·) and m(·) are polynomials; we will often write simply `, m
with the dependence on |z| understood. We call F polynomial-time computable if there is a deterministic
algorithm F running in time poly(|z|) such that for all z ∈ {0, 1}∗ and x ∈ {0, 1}`(|z|), we have F (z, x) =
fz(x).

Definition 2.2. (Auxiliary-input one-way function) A polynomial-time computable auxiliary-input
function fz : {0, 1}` → {0, 1}m is an auxiliary-input one-way function (AIOWF) if for every probabilistic
polynomial-time algorithm A, there exists an infinite set of strings Z ⊆ {0, 1}∗, such that for every z ∈ Z
we have

Pr
x

R←U`(|z|)

[A(z, fz(x)) ∈ f−1
z (fz(x))] ≤ neg(|z|).
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where neg(|z|) is a function that is smaller than nc for all c.

AIOWF’s are natural generalizations of one-way functions, which is the special case where the auxiliary
input z is given in unary instead of binary. Ostrovsky and Wigderson [35] proved the following:

Theorem 2.3 ([35]). If ZK 6= BPP then there exist AIOWF.

It will be useful to consider the following two relaxed variants of AIOWF.

Definition 2.4. Let fz : {0, 1}`(|z|) → {0, 1}m(|z|) be polynomial-time computable auxiliary-input function
family. Then,

• Auxiliary-input weak one-way function. The function family fz is weakly one-way if there
exists a polynomial p(·), such that for every probabilistic polynomial-time algorithm, A, there exists
an infinite set of strings Z ⊆ {0, 1}∗, such that for every z ∈ Z we have Pr[A(z, fz(U`(|z|))) /∈
f−1

z (fz(U`(|z|)))] > 1
p(|z|) (where the probability is taken over U`(|z|) and the internal coin tosses of

A).

• Auxiliary-input distributional one-way function. We say that A distributionally inverts
fz with distance ε if the statistical distance between the distributions (A(z, fz(U`)), fz(U`)) and
(U`, fz(U`)) is at most ε. We say the function f is distributionally one-way if there exists a
polynomial p(·) such that for every probabilistic polynomial-time algorithm A, there exists an infinite
set of strings Z ⊆ {0, 1}∗, such that for every z ∈ Z, A is unable to distributionally invert fz with
distance 1

p(|z|) .

It is well known that one can transform weak-OWFs or even distributional one-way functions to
standard OWFs [41, 27]. These reductions carry over to the setting of auxiliary-input primitives (as
most other cryptographic reductions); given an adversary A for the auxiliary-input weak-OWF (resp.
auxiliary-input distributional OWF), the reductions of [41] construct an adversary A′ for the underlying
AIOWF. But by the definition of AIOWF there must exist a set Z of auxiliary inputs that is hard for
A′, and so Z constitutes also a hard set of auxiliary inputs for A.

Proposition 2.5 ([41, 27]). (∃ auxiliary-input distributional-OWFs) ⇔ (∃ auxiliary-input OWFs) ⇔ (∃
auxiliary-input weak-OWFs). More precisely:

1. For any polynomials p, q, there is an efficient black-box reduction (C,R) that, for any auxiliary-input
function family fz, constructs another auxiliary-input function family Cfz , and where R takes any
black-box A that inverts Cfz with success probability 1/p(|z|) and constructs RA,fz that inverts fz

with probability 1−1/q(|z|). Furthermore, the reduction is fixed-auxiliary-input, i.e. given auxiliary
input z0, the inverting reduction R only calls A with auxiliary input z0.

2. For any polynomials p, q, there is an efficient black-box reduction (C,R) that, for any auxiliary-
input function family fz, constructs another auxiliary-input function family Cfz , and where R takes
any black-box A that inverts Cfz with probability 1/p(|z|) and constructs RA,fz that distributionally
inverts fz with distance 1/q(|z|). Furthermore, the reduction is fixed-auxiliary-input.

We will also work with pseudorandom functions [16], which are an efficiently-computable collection of
functions which cannot be distinguished from a truly random function. As before, it is known [24, 16]
how to construct PRF’s from OWF’s, and these reductions carry over to the auxiliary-input setting.
Formally, we define:
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Definition 2.6. Auxiliary-input pseudorandom functions. An AIPRF ensemble is an efficiently-
computable family F = {fz : {0, 1}s(|z|) × {0, 1}`(|z|) → {0, 1}m(|z|)}z∈{0,1}∗, where s(·), `(·) and m(·) are
polynomials, that satisfies the following. For any efficient oracle algorithm A, there exists an infinite set
Z ⊆ {0, 1}∗ such that ∀z ∈ Z,

| Pr
k∈{0,1}s

[Afz(k,·)(z) = 1]− Pr
φ

[Aφ|z|(·)(z) = 1]| ≤ neg(|z|)

where φ|z|(·) : {0, 1}`(|z|) → {0, 1}m(|z|) is a truly random function.

Proposition 2.7 ([24, 16]). (∃ auxiliary-input-OWFs) ⇔ (∃ auxiliary-input PRFs). More precisely, for
any polynomials p, q, there is an efficient black-box reduction (C, R) that, for any auxiliary-input function
family fz, constructs another auxiliary-input function family Cfz , and where R takes any black-box A
that distinguishes Cfz from a random function with advantage 1/p(|z|) and constructs RA,fz that inverts
fz with probability 1− 1/q(n).

3. Hardness of Learning via Karp Reduction Implies ZK Protocols

Perhaps the most natural route to prove that NP 6= P implies LIH is via Karp reductions. Indeed,
all the NP-hardness results for learning we are aware of (including the new PCP-based results) are of
this type. In this section we define formally Karp reductions and show that such reductions cannot show
NP-hardness of learning unless the polynomial hierarchy collapses. Moreover, we show that if a language
L (which is not necessarily NP-hard) Karp reduces to the task of improper learning circuits, then, L
has a statistical zero-knowledge argument system. Hence, the intractability of SZKA is a necessary
condition for proving LIH via Karp reductions. We start in Section 3.1 by considering a simplified
notion of Karp reduction in which the NO case is mapped to a distribution that cannot be predicted
in an information theoretic sense (i.e., even using a computationally unbounded hypothesis). Then, in
Section 3.2 we extend our results to the case in which the NO condition only holds for computationally
bounded hypothesis. Our main approach is to relate the existence of such reductions to the existence
of zero knowledge proofs or arguments for a certain promise problems that we call SGL (for statistical
gap-learning) and CGL (for computational gap-learning).

In this section (as is throughout the paper) we also consider the case of agnostic learning. In agnostic
learning the learner must work even given examples that are not perfectly predictable using a concept.
This makes the task of reductions to the learner easier, and hence makes our results (that rule out such
reductions) stronger.

3.1. Information-Theoretic Setting

We define a decision version of the problem of agnostic PAC learning circuits.

Definition 3.1. (Gap-Learning Problem – the information theoretic version) Let α, β be some
functions mapping N to [0, 1] such that 1/2 ≤ β(n) < α(n) ≤ 1 for every n ∈ N and p(·) be some
polynomial. The input to the promise problem SGLα,β is a circuit C of poly(n) size7 which samples a
joint distribution (X, Y ) over {0, 1}n × {0, 1}:

• YES instance: there exists a function f ∈ C such that Pr[f(X) = Y ] ≥ α(n).

• NO instance: for every (even inefficient) function f , Pr[f(X) = Y ] ≤ β(n).
7We can think of |C| = n2 without loss of generality.
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The parameters. The special case of α = 1 corresponds to the PAC-learning setting, while smaller α
corresponds to agnostic learning. In order to be useful in our context, α(n) − β(n) must be noticeable
(i.e., larger than 1/p(n) for some polynomial p(·)). In this setting of parameters, an agnostic learner can
be used to decide SGLα,β, while a PAC learner can be used to decide SGL1,β. Our results hold for any
choice of parameters that satisfy these conditions.

Our main result in this section shows that this problem is in SZKP (also known as SZK)— the class
of languages that has a zero knowledge proof system where both soundness and zero knowledge hold in
a statistical sense (i.e., with respect to computationally unbounded parties). Specifically, we will show
that SGL reduces to Entropy-Difference which is a complete problem for SZKP[19].

Definition 3.2 ([19]). An input to Entropy-Difference consists of a pair of distributions (W,Z) repre-
sented by circuits.

• In YES inputs, H(Z)−H(W ) ≥ 1.

• In NO inputs, H(W )−H(Z) ≥ 1.

Where H(·) is Shannon’s entropy.

Theorem 3.3. For every α and β which satisfy 1/2 ≤ β(n) < α(n) ≤ 1 and α(n) − β(n) > 1/p(n) for
some polynomial p(·), the problem SGLα,β is in SZKP.

Proof. We give a Karp reduction from SGLα,β to Entropy-Difference. This suffices as Entropy-Difference
is in SZKP [19], and SZKP is closed under Karp reductions.

We begin by restricting our attention to the case where β(n) ≥ 0.55 for every n. We will later show
how to remove this condition. Let C = (X, Y ) be an instance of SGLα,β, and let n be the size of the
examples output by X. We map the joint distribution (X,Y ) to the distributions W = (X, Y ) and
Z = (X,Y ′) where Y ′ is a Bernoulli random variable of success probability (α(n) + β(n))/2. Clearly,
the mapping is efficient. We claim that if (X, Y ) is a YES instance, then H(Z) −H(W ) ≥ 1/q(n) and
if (X, Y ) is a NO instance, then H(W ) −H(Z) ≥ 1/q(n) for some polynomial q(·). This difference can
amplified to 1 by taking q(c) independent copies of W and Z.

First we write H(W )−H(Z) as

H(X) + H(Y |X)− (H(X) + H(Y ′|X)) = H(Y |X)−H2(α(c)/2 + β(c)/2),

where [Y |X] is the conditional distribution of Y and H2(·) denotes the binary entropy function which
maps a real 0 < p < 1 to −p log(p) − (1 − p) log(1 − p). Let δ = maxb∈{0,1} Pr[[Y |X] = b]. Note that
δ ≥ α(c) in the YES case, and δ ≤ β(c) in the NO case. Also, by definition, δ is at least 1/2. Therefore,
since H2 is decreasing in the interval (1/2, 1), the entropy of [Y |X] is at most H2(α(c)) in the YES
case, and at least H2(β(c)) in the NO case. Finally, we argue that when α(c) − β(c) is noticeable and
β(c) ≥ 0.55, the quantities H2(α(c)/2 + β(c)/2)−H2(α(c)) and H2(β(c))−H2(α(c)/2 + β(c)/2) are also
noticeable. This can be verified by examining the Taylor expansion of the binary entropy function.

It is left to justify the restriction to β(n) ≥ 0.55. This is done by reducing SGLα,β to SGLα′,β′ , where
α′ = 0.9α + 0.1 and β′ = 0.9β + 0.1 ≥ 0.55. This suffice as α′ − β′ = 0.9(α− β) which is still noticeable.
Let b be a Bernoulli random variable which equals to 0 with probability 1/10. We map an instance
(X, Y ) of SGLα,β to the distribution (X ′, Y ′) where X ′ = (X, b) and Y ′ equals to 0 when b = 0, and
equals to Y otherwise. The correctness of the reduction follows from the following simple claim:

Claim 3.4. There exists a function f computable by a circuit of size t(c) for which Pr[f(X) = Y ] ≥ ε(c)
if and only if there exists a function f ′ computable by a circuit of size t(c) + Θ(1) for which Pr[f ′(X ′) =
Y ′] ≥ 0.9ε(c) + 0.1.
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To prove the if direction, define f to be f(x) = f ′(x, 1). For the only-if direction, transform f to f ′

by letting f ′(X, b) = b · f(X). This completes the proof of the theorem.

Theorem 3.3 yields the following corollaries:

Corollary 3.5. 1. If a promise problem Π reduces to SGL via a Karp reduction, then Π has a statis-
tical zero-knowledge proof. More generally, if SGL /∈ BPP then SZKP * BPP.

2. There is no Karp reduction (or even non-adaptive Turing reduction) from SAT to SGL unless the
Polynomial Hierarchy (PH) collapses.

Proof. The first item follows from Theorem 3.3, and the fact that SZKP is closed under Karp-reductions.
To prove the second item note that: (1) SZKP ⊆ CoAM [1]; (2) If NP ⊆ CoAM, then the Polynomial
Hierarchy collapses [9]; and (3) CoAM is closed under non-adaptive Turing reductions [10]. 8

The second item of the corollary shows that it is unlikely to base LIH on NP-hardness via a Karp
reduction to SGL. The first item shows that the intractability of SZKP is a necessary condition for
proving LIH via a Karp reduction to SGL. As mentioned before some converse implication is also true,
namely, LIH can be based on the intractability of SZKP (but not necessarily via Karp reduction).

Remark 3.6. The first part of Corollary 3.5 holds even under NC1 truth-table reductions which strictly
generalize standard Karp reductions. (See Appendix B for a formal definition.) This extension follows
immediately from the fact that SZKP is closed under such reductions [38].

3.2. Generalization to the Computational Setting

We now consider a computational version of SGL denoted as CGL in which the non-learnability in the
NO case holds with respect to efficient hypotheses. This generalizes the information theoretic version as
any YES (resp. NO) instance of CGL is also a YES (resp. NO) instance of CGL.

Definition 3.7. (Gap-Learning Problem – the computational version) The input to the promise
problem CGLα,β is a circuit C of poly(n) size which samples a joint distribution (X, Y ) over {0, 1}n ×
{0, 1}.

• YES instance: there exists a function f ∈ C such that Pr[f(X) = Y ] ≥ α(n).

• NO instance: for every function f computable by a circuit of size at most nlog n we have Pr[f(X) =
Y ] ≤ β(n).

The choices nlog n is arbitrary and any function s(n) = nω(1) will do. Again, we assume that the
parameters α, β satisfy 1/2 ≤ β(n) < α(n) ≤ 1 and α(n)−β(n) is noticeable. Our main theorem on this
problem is the following:

Theorem 3.8. For every α and β which satisfy 1/2 ≤ β(n) < α(n) ≤ 1 and α(n) − β(n) > 1/p(n) for
some polynomial p(·), the problem CGLα,β is in SZKA (the class of languages with statistically hiding
but computationally sound zero knowledge proofs).

The proof relies on the “SZK/OWF” characterization of SZKA recently shown by Ong and Vad-
han [34].

8Note that we are dealing with classes of promise problems which are unlikely to be closed under arbitrary Turing
reduction [10, 15].
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Theorem 3.9 ([34, Thm. 1.4, Proposition 2.4, FN 3]). A promise Problem Π = (ΠYes, ΠNo) ∈ MA has a
statistical zero-knowledge argument system if and only if Π satisfies the following condition: there exists
a set of instances I ⊆ ΠNo such that:

• The promise problem (ΠYes, ΠNo \ I) is in SZKP.

• There exists an efficiently computable function family gz : {0, 1}` → {0, 1}m and a polynomial
q(·) such that every non-uniform probabilistic polynomial-time adversary A fails to distributionally
invert gz with distance 1/q(|z|) on all sufficiently large z ∈ I.

We will need the following lemma whose proof is implicit in Section 4.2.

Lemma 3.10. Let Xz : {0, 1}m(|z|) → {0, 1}n(|z|) and Yz : {0, 1}m(|z|) → {0, 1} be auxiliary-input func-
tions which are polynomial-time computable. Let I ⊂ {0, 1}∗ be a set, A be an efficient inverting algo-
rithm, and δ, ε : N→ [0, 1] be functions. Suppose that for each z ∈ I:

1. There exists (possibly non-efficient) function f such that Pr[f(Xz(Um(|z|))) 6= Y (Um(|z|))] ≤ δ(|z|).
2. A distributionally inverts Xz(Um) with distance ε(|z|)3/(2|z|).

Then, there exists an efficiently-computable hypothesis h for which

Pr[h(Xz(Um(|z|))) 6= Y ((Um(|z|)))] ≤ δ(|z|) + ε(|z|), for all z ∈ I.

Proof of 3.8. We show that CGL satisfy the characterization of Theorem 3.9. It is not hard to verify
that the problem is in MA. (Merlin sends Arthur a circuit f for which Pr[f(X) = Y ] ≥ α and Arthur
estimates Pr[f(X) = Y ] up to an additive error of (α − β)/2 by applying a Chernoff bound). We let
the set I contain all the NO-instances (X,Y ) for which there exists a function f : {0, 1}n → {0, 1} that
predicts Y with probability (α+β)/2, that is Pr[f(X) = Y ] > (α+β)/2. (Since (X, Y ) is a NO-instance
f is not efficiently computable.) By Theorem 3.3, the problem CGLα,β \I = SGLα,β′=(α+β)/2 is in SZKP.
Let z : {0, 1}m(|z|) → {0, 1}n(|z|) × {0, 1} be an instance of CGLα,β. That is z is a circuit that samples
the joint distribution (X,Y ) = z(Um(|z|)). We define the function gz from {0, 1}m(|z|) to {0, 1}n(|z|) as
gz(r) = X(r), where X(r) is the circuit that samples the distribution X (i.e., X(r) outputs the first
n(|z|) bits of z(r)). The function gz is computable in polynomial-time (since circuit evaluation is in P).
We argue that gz is distributionally hard to invert with success probability better than ε(|z|)3/(2|z|) for
ε(|z|) = (α(|z|)− β(|z|))/4 when z ∈ I.

Indeed, assume towards a contradiction that there exists a nonuniform probabilistic algorithm A that
distributionally inverts gz(Um) with distance ε(|z|)3/24|z| for infinitely many z ∈ I. Recall that for
every z = (X, Y ) ∈ I there exists a function f for which Pr[f(X) = Y ] ≥ (α(|z|) + β(|z|))/2. Then,
by Lemma 3.10, there exists a polynomial-size circuit h such that Pr[h(X) = Y ] ≥ (α(|z|) + β(|z|))/2−
ε(|z|) = (α(|z|) + 3β(|z|))/4 > β for infinitely many z = (X, Y ) ∈ I, in contradiction to z being a
NO-instances.

Theorem 3.8 together with the fact that SZKA is closed under Karp-reductions implies the the
following corollary (which is a restatement of the first part of Theorem 1):

Corollary 3.11. If a promise problem Π reduces to CGL via a Karp reduction, then Π has a statistical
zero-knowledge argument. More generally, if CGL /∈ BPP then SZKA * BPP.

As mentioned earlier, we can also show that there is no Karp reduction (or even non-adaptive Turing
reduction) from SAT to CGL unless the Polynomial Hierarchy collapses. This will be proved in the next
section as a special case of Corollary 4.8.
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Remark 3.12. The first part of Corollary 3.11 can be generalized to hold under monotone-NC1 truth-
table reductions (defined in Appendix B) as one can prove that SZKA is closed under such reductions.
(This follows by combining the results of [39, Cor. 7.12], and [34, Thm. 1.2].)

4. Turing Reductions to Learning

We now consider a much more general class of reductions than Karp reductions, namely Turing re-
ductions with bounded adaptivity. Such reductions use the learner not just as a distinguisher between
learnable and non-learnable sets of examples, but may also use the actual hypotheses supplied by the
learner. We show that if L has a bounded-adaptivity Turing reduction to circuit learning then the worst-
case hardness of L can be used to construct AI one-way function. Furthermore, if L is hard on the
average, we get a (standard) one-way function. These results hold even if the learner is guaranteed to
learn in the agnostic setting.

We start by formally defining non-adaptive and bounded-adaptive Turing reductions to circuit learning.
In the following we let t ∈ N be a constant and ε be a noticeable function (i.e. bounded by some inverse
polynomial).

Definition 4.1. (Turing reductions to learning of bounded-adaptivity) A query9 (X, Y ) to the
learner is a joint distribution over {0, 1}n × {0, 1} which is represented, as a circuit C which takes m
random bits and samples (X,Y ), i.e. C(Um) ≡ (X, Y ). A t-adaptive Turing reduction from deciding L to
ε-PAC-learning C (resp. ε-agnostically learning C) is a tuple of probabilistic polynomial-time algorithms
(T1, . . . , Tt,M). Let q(·) denote the query-complexity of each round of the reduction. The reduction
attempts to decide whether an input z is in L in the following way:

• T1 takes input z ∈ {0, 1}n and fresh random bits ω and outputs q(n) queries for the learner, i.e.
distributions (X1, Y1), . . . , (Xq(n), Yq(n)) where each joint distribution (Xi, Yi) is sampled a circuit
Ci.

• For each j ≥ 2, the machine Tj takes input z, ω and additionally gets all (j − 1)q(n) hypotheses
(represented as circuits) answering queries from previous rounds, and outputs q(n) new queries for
the learner.

• M takes as input z, ω, as well as the t · q(n) hypotheses (represented as circuits) answering all
previous queries as additional input, and outputs a decision bit b.

Guarantee: The reduction guarantees that if all hypotheses returned by the learner are ε-good in the
PAC model (resp. in the agnostic model) with respect to the corresponding queries of T1, . . . , Tt, then
M decides z correctly with probability 2/3 over the choice of ω. The reduction is called non-adaptive if
t = 1, and fully non-adaptive if in addition, M uses the hypotheses as black-boxes and in a non-adaptive
way.

Our main result of this section is the following:

Theorem 4.2. Suppose that the language L reduces to Circuit-Learning in the agnostic model via a
Turing reduction of bounded adaptivity. Then, L /∈ BPP implies the existence of AI-one-way functions.

9Other more general notions of queries are also possible, for example the reduction could output a set of labelled examples
that are not generated as independent samples from a sampling circuit. However we believe that our definition is the most
natural and useful notion, as the definition of learning assumes that the examples seen are generated by independent identical
samples from a target distribution and labelling.
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We first prove the theorem in the simpler case of a reduction which makes a single query to a PAC-
learning oracle (Section 4.1), then examine the case of a single-query reduction in the agnostic setting
(Section 4.2), and finally extend the proof to polynomially-many non-adaptive reductions and reductions
of bounded adaptivity (Section 4.3). We end this section by drawing some corollaries from Theorem 4.2
and its proof (Section 4.4).

4.1. Single-query reduction in the PAC model

To give some idea of the proof we start with the much simpler case of a single-query deterministic
reduction. Such a one-query reduction takes any instance z of the language L, and computes from it a
query Cz. Here Cz : {0, 1}m(|z|) → {0, 1}n(|z|)×{0, 1} is a circuit that samples labeled examples from the
distribution (X, fz(X)), for some target function fz ∈ C.The reduction then gets a hypothesis h from the
learner and applies some algorithm M(z, h) to decide whether or not z ∈ L. We have that guarantee that
if the hypothesis h is ε-good with respect to X (where ε is some inverse-polynomial accuracy parameter)
then M(z, h) = 1 iff z ∈ L.

The proof follows the outline of Section 1.3. We will show the contrapositive: we describe a polynomial-
time decision procedure for L under the assumption that auxiliary-input OWFs do not exist. This can
be done by constructing an ε-good hypothesis hz for the learning problem described by Cz, and then
invoking M(z, h) to decide z. However, it is not clear how to use the non-existence of auxiliary-input
OWFs to learn the target function fz. Instead, we will “learn” the distribution (X, Y ) sampled by Cz.
That is, we construct an algorithm hz that given an example x

R← Cz(Um(|z|)) finds a label y such
that (x, y) ∈ Im(Cz). Indeed, this is tantamount to inverting Cz which indeed can be done with high
probability assuming that Cz is not even a weak auxiliary-input one-way function (which is the case
under our assumption, see Section 2.1).

We move on to a formal description of hz. Let Xz(r), Yz(r) denote the first and second elements of
Cz(r) respectively. Recall that, by Proposition 2.5, the non-existence of auxiliary-input OWFs implies
that Xz cannot be even auxiliary-input weak-OWF. Hence, since 1/ε(·) is bounded by a polynomial,
there exists an efficient probabilistic inverting algorithm A such that for all z ∈ {0, 1}∗ we have,

Pr
x

R←Xz(Um(|z|))
[A(z, x) /∈ X−1

z (x)] ≤ ε(|z|)/12, (1)

where the probability is also taken over the coin tosses of A. Let t(|z|) be the randomness complexity of
A(z, ·). We define the randomized hypothesis hz as follows:

1. Input: x ∈ {0, 1}n(|z|). Random input: s ∈ {0, 1}t(|z|).

2. Invoke the algorithm A on (z, x) with randomness s, and let r denote the output of A.

3. Output the label y = Yz(r).

Clearly, the resulting hypothesis is efficiently computable. First, we argue that the randomized hypothesis
hz is (ε/12)-good with respect to the target distribution Xz, and later we will de-randomize it. Assume,
without loss of generality, that the query (Xz, Yz) is honest (otherwise, hz is ε-good by definition). Fix
some x ∈ Im(Xz). Let r be a preimage of x under Xz. Then,

(x, y) = (Xz(r), Yz(r)) = Cz(r) = (x, fz(x)).

Therefore, whenever A finds an inverse of x under Xz, the hypothesis hz labels x correctly. Hence, by
Eq. 1, we have

Pr
x

R←Xz(Um(|z|)),s
R←Ut(|z|)

[hz(x; s) 6= fz(x)] ≤ Pr
x

R←Xz(Um(|z|)),s
R←Ut(|z|)

[A(x; s) /∈ X−1
z (x)] ≤ ε/12.
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To obtain a deterministic hypothesis, we randomly choose a string s ∈ {0, 1}t and fix the random
coins of hz to s. By a standard Markov argument (see Lemma A.4), except with probability 1/12,
the resulting deterministic hypothesis hz,s(·) def= hz(·; s) is ε-good. By a union bound, the resulting
randomized procedure M(z, hz,s; ω, s) decides z with error probability at most 1/3 + 1/12 = 5/12 over
the choice of the randomness (ω, s), which can amplified to 1/3 (or to 2−|z|) using standard techniques.
Hence, we get a BPP procedure for the language L, this completes the proof of the case of a single
deterministically generated query.

Randomly generated queries. Now, suppose that the query is not deterministic that is, Cz,ω =
(Xz,ω, Yz,ω) = (Xz,ω, fz,ω(Xz,ω)) is generated according to the input z and the randomness ω ∈ {0, 1}ρ(|z|).
In this case, we will consider the (efficiently computable) function gz which maps ω and r to the pair
(ω, Xz,ω(r)). We will assume that this function is not an auxiliary-input weak-OWF. Hence, we have
an efficient inverter A which, for every z, inverts gz(Uρ(|z|), Um(|z|)) with error probability ε(|z|)/12. We
construct a randomized hypothesis hz,ω(x; s) exactly as we did in the previous case, that is we label x
by computing applying Yz,ω to the string r that A(z, (ω, x); s) outputs (where s is chosen randomly and
ω is fixed to the global randomness of the reduction). Note that, again, whenever A finds an inverse of
(x, ω) under gz, the hypothesis labels x correctly. Indeed, fix some z, ω and x ∈ Im(Xz,ω). Suppose that
A found a preimage r of (x, ω) under gz, and let y be the label outputted by hz,ω. Then,

(ω, x, y) = (gz(ω, r), Yz,ω(r)) = (ω,Xz,ω(r), Yz,ω(r)) = (ω, x, fz,ω(x)).

Therefore, for every z, we can bound Prx,s,ω[hz,ω(x; s) 6= fz,ω(x)] by ε(|z|)/12, where the probability is

taken over random s, ω and x
R← Xz(Um(|z|)). Hence, by Lemma A.4, for every z, with probability at

least 1 − 11/12 over the random choice of ω and s, the hypothesis hz,ω,s(·) def= hz,ω(·; s) is ε-good with
respect the query Cz,ω. Hence, by a union bound, the BPP algorithm M(z, hz,ω,s; ω, s) decides z with
error probability at most 1/3 + 1/12 = 5/12 over the choice of the randomness (ω, s), and the lemma
follows.

4.2. Single-query reduction in the Agnostic model

Generalizing to the agnostic setting introduces some more technical difficulties. We do not know how
well functions in C classify a given query (X, Y ). So, instead of competing with these functions, we
will try to compete with the best (information-theoretic) classifier f . Given an example x, the optimal
classifier outputs the “majority label” b which maximizes Pr[Y = b|X = x]. Our hypothesis will try
to estimate this majority bit by sampling many random elements from the marginal [Y |X = x] and
taking the majority. Although this hypothesis might not always approximate f well (e.g. when the
majority label has probability slightly larger than 1/2), we show that its error is not much larger than
the error of f . To implement this approach, we rely on the ability to invert the sampling circuit even in
a distributional sense.

Formally, consider the case of a randomized reduction which makes a single query. Again, such a
reduction is described by a pair of PPTs (T, M) and an accuracy parameter ε(·) where T (z; ω) outputs a
query Cz,ω : {0, 1}m(|z|) → {0, 1}n(|z|) × {0, 1} to the learner, and M(z, h; ω) attempts to decide whether
z ∈ L. As before we prove the contrapositive: if there do not exist AIOWF then L ∈ BPP. Let
Cz,ω = (Xz,ω, Yz,ω) and let fz,ω be a possibly (non-efficient) function which maximizes the agreement
with the given query over all functions. That is, fz,ω maximizes Pr[fz,ω(Xz,ω) = Yz,ω]. We will describe
an efficient randomized procedure B(z; ω, s), that, with probability 11/12, outputs an hypothesis hz,ω

whose error probability is at most ε larger than the error probability of the optimal classifier fz,ω.
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Such an hypothesis satisfies, in particular, the condition Pr[hz,ω(Xz,ω) 6= Yz,ω] ≤ minφ∈C Pr[f(Xz,ω) 6=
Yz,ω] + ε(|z|) for any concept class C. Therefore, given an access to such an hypothesis, the output of
M(z, hz,ω;ω) is guaranteed to be correct with probability 2/3. As a result, we obtain a BPP algorithm
for L which errs with probability ≤ 1/3 + 1/12 < 5/12.

By Proposition 2.5, we may assume that gz is not auxiliary-input distributional-OWF. Thus, for every
inverse polynomial δ(·) there exists an efficient probabilistic inverting algorithm A such that for all
z ∈ {0, 1}∗, we have

∆((z, (r, ω), gz(r, ω)), (A(z, gz(r, ω); s), gz(r, ω))) ≤ δ(|z|), (2)

where r, ω and s are uniformly chosen strings of appropriate lengths. Fix δ(|z|) = ε(|z|)3/(24|z|) and let
A be the corresponding adversary. Let t(|z|) be the randomness complexity of A(z, ·). We define the
randomized hypothesis hz,ω as follows:

1. Parameter: q(|z|) = |z|/ε(|z|)2.
2. Input: x ∈ {0, 1}n(|z|). Randomness: ~s = (s1, . . . , sq(|z|)) where si ∈ {0, 1}t(|z|).

3. For i = 1, . . . , q(|z|):
(a) Invoke the algorithm A on (z, ω, x) with randomness si, and let ri denote the second output

of A.

(b) Let yi = Yz,ω(ri).

4. Output the label y = Majorityi(yi).

Since A is efficient, the resulting hypothesis is efficiently computable. We prove that h is a good ran-
domized hypothesis:

Lemma 4.3. For every z, we have Prω,~s[hz,ω(Xz,ω) 6= Yz,ω] ≤ Prω[fz,ω(Xz,ω) 6= Yz,ω] + ε(|z|)/12.

Given Lemma 4.3, we can complete the proof of the theorem by letting B(z; ω,~s) be the procedure
which outputs the hypothesis hz,ω(·;~s). By Lemma A.4, with probability 11/12 over ~s, the resulting
hypothesis is ε-good with respect to fz,ω and Xz,ω.

It is left to prove Lemma 4.3. Consider an (imaginary) “ideal” inverter Â which satisfies Eq. 2 with
δ(|z|) = 0. Let ĥz,ω be the hypothesis which results from hz,ω when A is replaced by Â. The proof of the
claim follows by showing that (1) the performance of the real hypothesis hz,ω is close to the performance
of the ideal hypothesis ĥz,ω; and (2) the ideal hypothesis ĥz,ω performs “almost” like the optimal classifier
fz,ω. Formally, we prove the following two claims:

Claim 4.4. For every z, the statistical distance between the random variable hz,ω(Xz,ω;~s) and the random
variable ĥz,ω(Xz,ω;~s) is at most q(|z|) · δ = ε(|z|)/24, where z, ω and ~s are uniformly chosen strings of
appropriate lengths.

Proof. By Eq. 2, for every z, the statistical distance between the random variable

(A(z, (ω, Xz,ω(r)); s), (ω, Xz,ω(r))), (3)

and the random variable

(Â(z, (ω, Xz,ω(r)); s), (ω, Xz,ω(r))) (4)
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is bounded by δ(|z|). Note that real hypothesis hz,ω(Xz,ω) simply applies some deterministic function
Q to q(|z|) copies of Eq. 3 where in each copy fresh randomness s is being used. The same holds with
respect to the “perfect” hypothesis (where Q is applied to q(|z|) copies of Eq. 4). Hence, by Facts A.1
and A.3, the claim follows.

Claim 4.5. For every z, we have Prω,~s[ĥz,ω(Xz,ω) 6= Yz,ω] ≤ Prω[fz,ω(Xz,ω) 6= Yz,ω] + ε(|z|)/24.

Proof. First note that for every z and ω, the perfect inverter Â(z, (ω, Xz,ω(r))) outputs ω and r′ which is
a random preimage of Xz,ω(r). Hence, we may fix z and ω and omit all the dependencies in them (e.g.,
we write X = Xz,ω, Y = Yz,ω, f = fz,ω, ε = ε(|z|) and so on). For every x ∈ Im(X) we let

α(x) def= max
b∈{0,1}

Pr
r

[Y (r) = b|X(r) = x].

Observe that the function f(x) always outputs the label arg maxb∈{0,1} Prr[Y (r) = b|X(r) = x]. Fix x
and let Yx be the distribution of Y conditioned on X = x. Let χi be Bernoulli random variable which
describes the i-th iteration of ĥ(x). Specifically, χi = 1 if and only if the algorithm Â returns the label
f(x) in the i-th call, and χi = 0 otherwise. Since Â is perfect, we have E[χi] = α(x), also the hypothesis
ĥ(x) disagree with f only when

∑
i χi < q/2. We consider two cases, the first for α(x) ≥ 1/2 + ε(|z|)/25

and the second for α(x) ≤ 1/2 + ε(|z|)/25.

Case 1 (f(x) is easy to predict). Since α(x) ≥ 1/2 + ε(|z|)/25 we can use Chernoff bound to argue
that ĥ(x) almost always agrees with f . That is,

Pr[ĥ(x) 6= f(x)] = Pr


1

q

q(|z|)∑

i=1

χi ≤ 1/2


 ≤ Pr


α(x)− 1

q

q(|z|)∑

i=1

χi ≥ ε(|z|)/25


 ≤ 2−Ω(|z|),

where the probability is taken over the randomness of Â. Therefore,

Pr[ĥ(x) 6= Yx]− Pr[f(x) 6= Yx] ≤ 2−Ω(|z|). (5)

Case 2 (f(x) is hard to predict). In this case, ĥ disagrees with f with noticeable probability.
However, the error probabilities of both, ĥ and f , are close to 1/2, and therefore ĥ performs almost as
well as f . Formally, since 1/2 ≤ α(x) ≤ 1/2 + ε(|z|)/25, we have

Pr[ĥ(x) 6= Yx]− Pr[f(x) 6= Yx] ≤ 1/2− (1− α(x)) = α(x)− 1/2 ≤ ε(|z|)/25. (6)

The claim follows from Eq. 5 and 6.

Note that our argument actually proves Lemma 3.10.

4.3. Proof of Theorem 4.2

We continue with the proof of the general case.
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Handling polynomially-many non-adaptive queries. We begin by considering the case of a non-
adaptive randomized reductions that makes polynomially-many randomized queries (i.e., sends k dis-
tributions (X1, Y1), . . . , (Xk, Yk) to the learner) based on the input z and randomness ω. Define the
(efficiently computable) function gz which maps the randomness ω, an index i ∈ [k] and r, to the tuple
ω, i and Cz,ω,i(r)) (which is the circuit that samples Xi). We show that a sufficiently strong inverter for
g succeeds in inverting Cz,ω,i for all i’s and most ω’s. Hence, it supplies a sequence of good hypotheses,
which we use to build a decision procedure for the language.

Formally, assume that gz is not an auxiliary-input distributional OWF, there exists an inverter A
which distributionally inverts it on random input with deviation error of ε(|z|)3/(24|z| · k(z)). Hence,
for every z and every fixed index i ∈ [k(|z|)], the inverter A distributionally inverts (ω, i, Xi(r)) with
deviation error smaller than ε(|z|)3/(24|z|). Therefore, we can define the i-th (randomized) hypothesis
hz,ω,i(x; s) which invokes the algorithm A on (z, x) for q = q(|z|) = |z|/ε(|z|)2 times (each time with
independent randomness) and outputs the majority of Yz(ri), where ri denotes the i-th output of A. The
proof proceeds with the same argument as in the previous section.

The adaptive case. Suppose that the reduction has t = O(1) levels of adaptivity, that is we have
efficient oracle machines T1, . . . , Tt,M oracle machines such that at the i-th step the machine Ti generates
polynomially many non-adaptive queries ((X1, Y1), . . . , (Xk(|z|), Yk(|z|))) based on the input z, the global
randomness ω, and an oracle access to the hypotheses given so far in response to the previous queries.
At the final step M(z; ω) decides z based on an oracle access to all the hypotheses given by the learner.
We will prove that such a reduction puts the language L in BPP (assuming that AIOWFs do not
exist). The proof goes by induction on number of adaptive levels. For t = 1 we get the non-adaptive
case. Suppose we have t levels of adaptivity. Then, the proof of the non-adaptive case shows how to
answer the queries of the first step efficiently. More accurately, assuming that AIOWFs do not exist,
there exists a probabilistic polynomial time procedure B(z; ω, s) which outputs a sequence of hypotheses
~h = (h1, . . . , hk(|z|)) which are ε-good for the queries of T1(z, ω) with probability 1− 1/(12t) (in fact, we
can replace 12t with any arbitrary polynomial p(|z|)). Hence, we can replace the first two stages T1, T2 of
the reduction by a single step in which we invoke B(z; ω, s) to generate the hypotheses ~h, and then hand
them to T2(z,~h; ω). The claim now follows by applying the induction hypothesis. (The complexity of
the procedure grows by a polynomial factor in each step, and so can only be repeated a constant number
of times.)

Remark 4.6. In fact, in the non-adaptive case, we proved the following stronger claim. Suppose that the
language L reduces to Circuit-Learning via a non-adaptive Turing reduction. Then, we have a reduction
from L to the task of inverting an auxiliary-input weak-OWF g which is “fixed” over the auxiliary input.
Namely, there exists a PPT R and a polynomial p(·), such that for any inverter A for f and for any z, if
A inverts fz with success probability 1−1/p(|z|), then the machine R takes as an input the code of A and
a string z and decides whether z ∈ L with probability 2/3. Furthermore, if L reduces to Circuit-Learning
via a fully non-adaptive Turing reduction then R uses A in a black-box way and non-adaptively.

4.4. Main Results

We say that a language L is hard on average if there exists an efficiently-samplable distribution
ensemble {Zn}, such that for every efficient algorithm A, and any polynomial p(·), we have Prz[A(z) =
L(z)] ≤ 1/2 + 1/p(|z|).
Lemma 4.7. Suppose that the language L reduces to Circuit-Learning via a Turing reduction of bounded
adaptivity. Then, if L is hard on average then (standard) one-way functions exist.
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Proof sketch. The non-adaptive case follows immediately from Remark 4.6. (The one-way function F
samples an element z from the distribution Z and a random string x from the domain of gz and outputs the
pair (z, gz(x)).) The proof of the O(1)-adaptive case is by induction similarly to the proof of Theorem 4.2
(the adaptive case).

The following corollary of Theorem 4.2 completes the proof of Theorem 2 mentioned in the introduc-
tion:

Corollary 4.8. Suppose that an NP-complete language L reduces to Circuit-Learning in the agnostic
model via a Turing reduction R of bounded adaptivity. Then,

1. If there exist a hard-on average language in NP then there exist one-way functions, i.e. Pessi-
land=Minicrypt.

2. If the reduction R is fully non-adaptive then the Polynomial Hierarchy collapse to the second level.

The first part of the corollary follows directly from Lemma 4.7. To prove the second part, we note
that our proof showed that a fully non-adaptive reduction from L to learning gives an auxiliary-input
one-way function whose security is based on the hardness of L via a “simple” (i.e. fixed-auxiliary-input,
black-box non-adaptive) reduction R (see Remark 4.6). For such simple reductions, we can adapt the
results of Akavia et al. [2] to put L in CoAM (see Appendix C).

Note that any non-adaptive Turing reduction to CGL is a special case of a fully non-adaptive Turing
reduction to Agnostic-Circuit-Learning. Hence the “moreover” part of Theorem 1 follows from Corol-
lary 4.8.

5 Hardness of learning from AIOWF

In the opposite direction, it is not hard to see that the existence of AIOWF implies the hardness
of learning small circuits, since from AIOWF we can construct auxiliary-input pseudorandom function
(AIPRF) that are computable by small circuits, and by definition AIPRF are hard to learn.

Theorem 5.1. If there exist AIPRF’s then it is hard to learn small circuits ( i.e. circuits that can
compute the AIPRF’s).

Proof. Let fz be a AIPRF function family. We claim that small circuits (just large enough to compute
fz) are hard to learn. For suppose not and there were such an A such that for all but finitely many z,
there exist p(n) and p′(n) such that

Pr
A,k

[A(Un,fz(k,Un))(z) outputs h that is 1+1/p(n)
2 close to fz(k, ·)] > 1/p′(n)

Then we could build a distinguisher for fz using A: the distinguisher A′ with access to an oracle O would
simply simulate A by simulating the example oracle that samples U at random and returns an example
(U,O(U)); after simulating A it gets back a hypothesis h. A′ then performs the following sanity check
to see whether h is indeed close to O: sample O(n(p(n))2) times from U and checking whether h agrees
with O on say ≥ 1

2 + 1
4p(n) fraction of these samples. With probability > 1− 2−n, this test distinguishes

between h with agreement ≥ 1+1/p(n)
2 from h with agreement ≤ 1/2. If h passes the sanity check, sample

one last example x
R← U output 1 if h(x) = O(x) and 0 otherwise, if it fails the sanity check then output

a random bit.
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To analyze this reduction, notice that if A is given an oracle O = fz(k, ·) then with probability
> 1/p′(n) it obtains h with agreement at least 1+1/p(n)

2 with O. If A′ obtains a good h then with
probability > 1−2−n the sanity check passes and A′ outputs 1 with probability > 1+1/p(n)

2 . On the other
hand, if it obtains a bad h that has agreement less than 1+1/p(n)

2 then A′ outputs 1 with probability at
least 1/2: if the agreement of h and O is less than 1/2 then our sanity check will almost always detect it
in which case we will output a random bit; on the other hand if its agreement is > 1/2 then on the final
example x clearly A will output 1 with probability whatever the agreement is. So overall its probability
of outputting 1 is at least 1

2 + 1
2p′(n)p(n) (up to some negligible terms from the Chernoff bounds).

If A is given an oracle O = φ, then its probability of outputting 1 is ≤ 1/2 + 2−n. This gives a
non-negligible advantage 1

2p′(n)p(n) (up to negligible terms) and proves the claim.

Since Ostrovsky and Wigderson [35] show that ZK 6= BPP implies the existence of AIOWF, we have
the following:

Corollary 5.2. If ZK 6= BPP, then it is hard to learn small circuits.

Acknowledgements. We thank Tal Malkin and Parikshit Gopalan for fruitful discussions.
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A Some useful facts

A.1 Statistical distance

Fact A.1. For all distributions X, Y and every (possibly randomized) function f we have ∆(f(X), f(Y )) ≤
∆(X, Y ).

Let A⊗B denotes the product distribution of A, B, i.e., the joint distribution of independent samples
from A and B.

Fact A.2. For all distributions X, X ′, Y, Y ′ we have ∆((X ⊗X ′), (Y ⊗ Y ′)) ≤ ∆(X,Y ) + ∆(X ′, Y ′).

Fact A.3. Let X be a distribution, and let f and g be randomized algorithms for which the statistical
distance between the random variable (X, f(X)) and the random variable (X, g(X)) is at most ε. Then,
for every integer t, the statistical distance of (X,⊗tf(X)) and (X,⊗tg(X)) is at most t · ε.
Proof. By the definition of statistical distance we can write,

∆((X,⊗tf(X)), (X,⊗tg(X))) = E
x

R←X
[∆(⊗tf(x),⊗tg(x))]

≤ E
x

R←X
[t ·∆(f(x), g(x))]

= t · E
x

R←X
[∆(f(x), g(x))]

= t ·∆((X, f(X)), (X, g(X))) ≤ t · ε,
where the first inequality is due to Fact A.2, and the second equality follows from the linearity of the
expectation.

A.2 Derandomizing good hypotheses

The following fact shows that if h is a good randomized hypothesis, then the deterministic hypothesis
h(·; s) which results from h by randomly fixing its randomness to s is, with high probability, also good.

Fact A.4. Let X be a target distribution. Let f be a target function and h be a hypothesis, both possibly
randomized. Suppose that Pr[f(X) 6= h(X)] ≤ ε, where the probability is taken over X and the coin
tosses of f and h. Then, for any k > 0, we have

Pr
s

[Pr[f(X) 6= hs(X)] ≥ k · ε] ≤ 1/k,

where hs is the deterministic hypothesis obtained by fixing the randomness of h to s, and the internal
probability is taken over X and the coin tosses of f .

Proof. Let χx,s,r be a Bernoulli random variable which equals to 1 if and only if h(x; s) 6= f(x; r), where
x is distributed according to X and s, r are the random coin tosses of h and f . Then, Ex,s,r[χx,s,r] =
Es[Ex,r[χx,s,r]] ≤ ε. Therefore, by Markov’s inequality, we have, Prs[Ex,r[χx,s,r] ≥ k · ε] ≤ 1/k. The claim
follows by noting that Ex,r[χx,s,r] = Pr

r,x
R←X

[f(x; r) 6= h(x; s)] for any fixed s.
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B Truth-Table Reductions

Consider variables taking value in {0, 1,∅}. We extend standard boolean algebra so that ¬∅ = ∅,
∅ ∧ 1 = ∅ ∧∅ = ∅, ∅ ∧ 0 = 0, ∅ ∨ 1 = 1, ∅ ∨ 0 = ∅ ∨∅ = ∅. For a promise problem Π, let

χΠ(x) =





1 x ∈ ΠY

0 x ∈ ΠN

∅ else

Definition B.1. A promise problem Π reduces to a promise problem Γ via a (polynomial-time) truth-
table reduction if there exists an efficient (possibly randomized) algorithm R taking an instance x of Π
and some random bits and outputting a polynomial-size circuit C and instances y1, . . . , yk of Γ such that
over the probability of the reduction R:

x ∈ Π ⇔ Pr[C(χΓ(y1), . . . , χΓ(yk)) = 1] ≥ 2/3
x /∈ Π ⇔ Pr[C(χΓ(y1), . . . , χΓ(yk)) = 1] ≤ 1/3

If R always outputs an NC1 circuit (resp. monotone NC1 circuit) then the reduction is called NC1 (rep.
monotone NC1) truth-table reduction.

C Collapsing PH via [2]

Here we sketch the proof of the second part of Corollary 4.8. The idea is that applying Theorem 4.2 to
a fully non-adaptive reduction from deciding L to learning C actually gives a reduction from deciding L
to inverting AIOWF gz with additional structure that can then be exploited to get more consequences.
In particular, the reduction uses the inverter non-adaptively in a black-box way, and it is “fixed” over
the auxiliary input (see Remark 4.6). We can therefore rely on the following theorem which is implicit
in the work of Akavia et al. [2].

Theorem C.1. Suppose that there is a non-adaptive fixed-auxiliary-input black-box reduction from in-
verting L to inverting AIOWF. Then L ⊆ CoAM.

Proof sketch. We apply the main idea of [2], which is to construct an AM protocol for the complementary
language L̄ by forcing the prover in the protocol to act as if it were an honest oracle that inverts an
AIOWF.

The challenge is to force the prover never to cheat, e.g. by falsely claiming that some of R′ queries
are not invertible, or by adaptively choosing the inverses in a way that will affect R′’s execution. This is
done in [2], using techniques from [11, 8], by using hashing and hiding protocols.

We can in fact apply [2]’s proof verbatim to our setting except their use of a OWF with our AIOWF
(with auxiliary input z0) and replacing calls to their OWF-inverting oracle to our AIOWF-inverting
oracle (with auxiliary input z0). Recall roughly what [2] does:

1. Estimate the fraction of queries made by the reduction that are heavy.

2. Estimate the average preimage size of the reduction’s queries conditioned on the query not being
heavy using a hiding protocol.
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3. Execute the reduction p(n) many times to get queries ~y1, . . . , ~yp (each ~yi is a list of the queries
that the reduction would make). Get proofs from the prover about which queries are heavy; if the
number of heavy queries is far from the estimate of the fraction of queries from the first step, reject.

4. Ask the prover to prove lower bounds on the preimage sizes of all the queries that are light, and
check that the average is close to the estimate obtained in the second step. Reject if the average
preimage size of the ~yi is far from the estimate of the previous step.

5. Choose j ∈ [q] at random and run the reduction using the queries ~yj .

To apply this to our setting, observe that the only difference between our setting and that of [2] is
the [2] assume that OWF is uniformly computable where as in our case we need the additional auxiliary
input z0 to compute the function. But the uniform computability is only used in the following ways:

1. To sample input-output pairs (x, f(x)).

2. To apply the Goldwasser-Sipser lower bound and Aiello-Hastad upper bound protocols to approx-
imate the size of f−1(y).

3. To verify that the inverting oracle returned a x that is a correct preimage, i.e. to verify that
f(x) = y.

Replacing the OWF by an AIOWF clearly does not affect any of these uses because both the prover and
verifier have access to the auxiliary input z0, and so they can both use fz0(·) where the [2] uses f(·).

We should note that removing the restriction that R′ only query the inverting orace on auxiliary input
z0 would prevent us from applying [2] to our setting. To see a simple contrived example why [2] fails in
this case, consider a reduction R′ that gets input z0 and queries its inverting oracle on (y1, y1), . . . , (yk, yk)
where yi are chosen at random; i.e. the auxiliary input and the input are identical. Then it is not clear
how to hide queries to obtain the necessary statistics because the prover will always be able to recognize
queries from the reduction, since the auxiliary input and standard input are equal.
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